Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Sarantseva E. I., Iskra T. D., Semyachkina-Glushkovskaya O. V. Molecular mechanisms of the opening of the blood-brain barrier in rodents by means of sound. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 1, pp. 94-103. DOI: 10.18500/1816-9775-2023-23-1-94–103, EDN: FSIHWE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 118)
Полный текст в формате PDF(En):
(downloads: 48)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
612.42[577.725]
EDN: 
FSIHWE

Molecular mechanisms of the opening of the blood-brain barrier in rodents by means of sound

Autors: 
Sarantseva Elena I., Saratov State University
Iskra Tatyana D., Saratov State University
Semyachkina-Glushkovskaya Oksana V., Saratov State University
Abstract: 

In this study, in experiments on 35 healthy male mice of the C57BL/6 line weighing 25±3 g, it was shown that loud sound/music for 2 hours causes a temporary increase in the permeability of the blood-brain barrier (BBB) in rodents. To investigate changes in the permeability of the blood-brain barrier, the molecular mechanisms responsible for its discovery were investigated using laser speckle-contrast imaging of regional cerebral blood fl ow (rCBF), immunohistochemical analysis and biochemical analysis of adrenaline in blood plasma. With a sound-dependent increase in the permeability of the blood-brain barrier, there was a decrease in signal intensity from CLND-5, Occ, JAM and an increase in the signal from ZO-1. However, after 4 hours, the signal intensity from the studied proteins was restored, which may be due to their internalization. The results of the study of the eff ects of music and sound on of BBB in the intact brain require a revision of traditional knowledge about the barrier functions of the brain and open up new opportunities for non-invasive drug delivery strategies. They also may off er some insight into the etiology of brain disorders that follow inadvertent or deliberate exposure to very loud sounds, i.e. battle or rock concerts.

Reference: 
  1. Ronaldson P., Davis T. Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity // J. Cereb. Blood Flow Metab. 2020. Vol. 40. P. 10–12. https://doi.org/10.1177/0271678X20951995
  2. Banks W. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery // Nature. 2016. Vol. 15. P. 46–74. https://doi.org/10.1038/nrd.2015.21
  3. Wu S., Li K., Yan Y., Gran B., Han Y., Zhou F., Guan Y., Rostami A., Zhang G. Intranasal Delivery of Neural Stem Cells: A CNS-specifi c, Non-invasive Cell-based Therapy for Experimental Autoimmune Encephalomyelitis // J. Clin. Cell. Immunol. 2013. Vol. 4, iss. 3. PMID:24244890. https://doi.org/10.4172/2155-9899.1000142
  4. Semyachkina-Glushkovskaya O., Kurths J., Borisova E., Sokolovsky S., Mantareva N., Angelov I., Shirokov A., Navolokin N., Shushunova N., Khorovodov A., Ulanova M., Sagatova M., Ahranovich I., Sindeeva O., Gekalyuk A., Bordova A., Rafailov E. Photodynamic opening of blood-brain barrier // BOE. 2017. № 8 (11). P. 5040–5048. https://doi.org/10.1364/BOE.8.005040
  5. Gill S., Patel N., Hotton G., O’Sullivan K., McCarter R., Bunnage M., Brooks D., Svendsen C., Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease // Nat. Med. 2003. Vol. 9. P. 589–595. https://doi.org/10.1038/nm850
  6. Kiviniemi V., Korhonen V., Kortelainen J., Rytky S., Keinänen T., Tuovinen T., Isokangas M., Sonkajärvi E., Siniluoto T., Nikkinen J., Alahuhta S., Tervonen O., Turpeenniemi-Hujanen T., Myllylä T., Kuittinen O., Voipio J. Real-time monitoring of human blood-brain barrier disruption // PLoS One. 2017. Vol. 12, iss. 3. P. 1–16. https://doi.org/10.1731
  7. Lipsman N., Meng Y., Bethune A., Huang Y., Lam B., Masellis M., Herrmann N., Heyn C., Aubert I., Boutet A., Smith G. S., Hynynen K., Black S. E. Blood–brain barrier opening in Alzheimer’s disease using MRguided focused ultrasound // Nat. Commun. 2018. Vol. 9. P. 2336. https://doi.org/10.1038/s41467-018-04529-6
  8. 8. Wang H. L., Lai T. W. Optimization of Evans blue quantitation in limited rat tissue samples // Sci. Rep. 2014. Vol. 4. P. 1–7. https://doi.org/10.1038/srep06588
  9. Yisong Q., Tingting Yu., Jianyi X., Peng W., Yilin M., Jingtan Z., Yusha L., Gong H., Luo Q., Zhu D. FDISCO: Advanced solvent-based clearing method for imaging whole organs // Sci. Adv. 2019. Vol. 5. P. eaau8355. https://doi.org/10.1126/sciadv.aau8355
  10. Abdurashitov A., Lychagov V., Sindeeva O., Semyachkina-Glushkovskaya O., Tuchin V. Histogram analysis of laser speckle contrast image for cerebral blood fl ow monitoring // Front. Optoelectron. 2015. Vol. 8, iss. 2. P. 187–194. https://doi.org/10.1007/s12200-015-0493-z
  11. Roszkowski M., Bohacek J. Stress does not increase blood-brain barrier permeability in mice // Journal of Cerebral Blood Flow and Metabolism. 2016. Vol. 36, № 7. P. 43–46. https://doi.org/10.1177/0271678X16647739 
  12. Bryan R. M. Cerebral blood fl ow and energy metabolism during stress // Am. J. Physiol . 1990. Vol. 259. P. 269– 280. https://doi.org/10.1152/ajpheart. 1990. 259.2.H269
  13. Matter K., Balda M. S. Signalling to and from tight junctions // Nat. Rev. Mol. Cell. Biol. 2003. Vol. 4, № 3. P. 225–236. https://doi.org/10.1038/nrm1055
  14. Ghosh C., Gonzalez-Martinez J., Hossain M., Cucullo L., Fazio V., Damir Janigro D., Marchi N. Pattern of P450 expression at the human blood–brain barrier: Roles of epileptic condition and laminar fl ow // Epilepsia. 2010. Vol. 51. P. 1–3. https://doi.org/10.1111/j.1528-1167.2009.02428.x
  15. Hara M. R., Kovacs J. J., Whalen E. J. A stress response pathway regulates DNA damage through β2- adrenoreceptors and β-arrestin-1 // Nature. 2011. Vol. 477, № 7364. P. 349–353. https://doi.org/10.1038/nature10368
  16. Kanki H., Sasaki T., Matsumura S., Satoru Yokawa S., Yukami T , Munehisa Shimamura M., Manabu Sakaguchi M., Furuno T., Suzuki T., Mochizuki H. β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke // Cell Death and Disease. 2019. Vol. 10, № 2. P. 456–459. https://doi.org/10.1038/s41419-019-1375-x
  17. Soh U. J. K., Trejo J. A. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through β-arrestin and dishevelled-2 scaffolds // Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, № 50. P. 1372–1380. https://doi.org/10.1073/pnas.1112482108
Received: 
14.11.2022
Accepted: 
07.12.2022
Published: 
31.03.2023
Short text (in English):
(downloads: 42)