Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Kulapina O. I., Mursalov R. K. Electroanalytical properties of planar sensors in aqueous environments of amoxicillin. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 1, pp. 16-25. DOI: 10.18500/1816-9775-2022-22-1-16-25

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 134)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
543: 615.33

Electroanalytical properties of planar sensors in aqueous environments of amoxicillin

Autors: 
Kulapina Olga Ivanovna, Saratov State Medical University
Mursalov Ruslan K., Saratov State University
Abstract: 

One of the widely used antibiotics of the penicillin series in medicine are amoxicillin and amoxiclav – the representatives of "protected" penicillins. To control the concentration of these antibiotics, HPLC, spectrophotometry, capillary electrophoresis are applicable, which are long-lasting, require expensive equipment, operators and are not applicable for the express determination of aminopenicillins in biological and medicinal aqueous. Unmodifi ed and modifi ed polyaniline planar potentiometric sensors based on dimethyldistearylammonium associates with silver (I) – amoxicillin complex compounds have been developed, their electrochemical and operational characteristics have been determined: it has been shown that the linearity interval of electrode function is 1. 10-2 – 1. 10-4 М, the angular coeffi cient is 50 ± 4 mV/pC, the detection limit of amoxicillin is 8·10-5 М; the service life of sensors is 1,5–2 months. For polyaniline-modifi ed planar sensors, relatively high potential values (about 400 mV) were recorded in amoxicillin aqueous, due to the synergistic eff ect of the electrically conductive properties of carbon-containing ink and polyaniline.

Reference: 
  1. Yakovlev V. P., Yakovlev S. V. Ratsional’naya antimikrobnaya farmakoterapiya [Rational Antimicrobial Pharmacotherapy]. Moscow, Litterra Publ., 2007. 784 p. (in Russian).
  2. Bol’shakov D. S., Amelin V. G., Nikeshina T. B. Determination of antibiotics in drugs and biological fl uids using capillary electrophoresis. J. Analyt. Chem., 2016, vol. 71, no. 3, pp. 215–233 (in Russian). https://doi.org/10.1134/S1061934816010020
  3. Dronov I. A. The use of amoxicillin / clavulanate in pediatric practice: topical issues. Russian Medical Journal, 2015, no. 18, pp. 1091–1095 (in Russian).
  4. Zhavoronko I. Yu., Kudrikova L. E. Assessment of the suitability of HPLC methods for the analysis of tablets “Amoxicillin”. Scientist, 2018, vol. 1, no. 1, pp. 11–15 (in Russian).
  5. Kulapina O. I., Kulapina E. G. Antibakterial’naya terapiya. Sovremennyye metody opredeleniya antibiotikov v biologicheskikh i lekarstvennykh sredakh [Antibacterial therapy. Modern methods of defi nition of antibiotics in medicinal and biological environments]. Saratov, Saratovskiy istochnik Publ., 2015. 91 p. (in Russian).
  6. Marakaeva A. V., Kosyreva I. V. Test-determination of amoxicillin in medications. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 2, pp. 146–151 (in Russian). https://doi.org/10.18500/1816-9775-2019-19-2-146-151
  7.  Sapon E. S., Lugin V. G. The development and validation of the modality for quantitative amoxicillin assay in solid dosage forms by means of FTIR spectroscopy. Vestnik VGMU, 2020, vol. 19, no. 4, pp. 98–106 (in Russian). https://doi.org/10.22263/2312-4156.2020.4.98
  8. Damiati S., Schuster B. Electrochemical biosensors based on S-layer proteins. Sensors, 2020, vol. 20, no. 6, pp. 1721.
  9. Liu J., Li S., Lu Y., Low S.S., Li X., Zhu L., Cheng C., Xu G., Liu Q., Xu N., Men H. Salivary cortisol determination on smartphone-based differential pulse voltammetry system. Sensors, 2020, vol. 20, no. 5, pp. 1422.
  10. Tonello S., Sardini E., Serpelloni M., Abate G., Uberti D. Aerosol jet printed 3D electrochemical sensors for protein detection. Sensors, 2018, vol. 18, no. 11, pp. 3719.
  11. Gornall D. D., Collyer S. D., Higson S. P. J. Investigations into the use of screen-printed carbon electrodes as templates for electrochemical sensors and sonochemically fabricated microelectrode arrays. Sensor. Actuat. B-Chem., 2009, vol. 141, no. 2, pp. 581–591.
  12. Honeychurch K. C., Hart J. P. Screen-printed electrochemical sensors for monitoring metal pollutants. Trends Anal. Chem., 2003, vol. 22, no. 7, pp. 456–459.
  13. Makarova N. M., Kulapina E. G. New potentiometric screen-printed sensors for determination of homologous sodium alkylsulfates. Sensor. Actuat. B-Chem., 2015, no. 210, pp. 817–824.
  14. Khaled E., Mohammed G.G., Awad T. Disposal screenprinted carbon paste electrodes for the potentiometric titration of surfactants. Sensor. Actuat. B-Chem., 2008, no. 135, pp. 74–80.
  15. Mohammed G. G., Awad T. A., El-Shahat M. F., AlSabagh A. M., Migahed M. A., Khaled E. Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Anal. Chim. Acta, 2010, no. 673, pp. 79–87.
  16. Mohammed G. G., Awad T. A., El-Shahat M. F., AlSabagh A. M., Migahed M. A. Novel screen-printed electrode for the determination of dodecyltrimethylammonium bromide in water samples. Drug Test. Anal., 2012, vol. 4, no. 12, p. 1009.
  17. Ghaedi M., Montazerozohori M., Khodadoust S., Behfar M. Chemically Modifi ed Multiwalled Carbon Nanotubes as Effi cient Material for Construction of New Al (III) Ion Selective Carbon Paste Electrode. IEEE Sensors J., 2013, vol. 13, pp. 321–327.
  18. Mohammed G. G., Nour El-Dien F. A., Frag E. Y. Z., Mohammed M. E.-B. In situ modifi ed screen-printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in its formulation. J. Pharm. Anal., 2013, vol. 3, no. 5, pp. 367–375.
  19. Kulapina E. G., Tyutlikova M. S. The solid-state and planar sensors for the determination of cefotaxime in aqueous and biological fl uids. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2017, vol. 17, iss. 1, pp. 14–18 (in Russian). https://doi.org/10.18500/1816-9775-2017-17-1-14-18
  20. Kulapina E. G., Chanina V. V. Express method for cefazolin determination in small samples sensors planar potentiometric. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 1, pp. 4–10 (in Russian). https://doi.org/10.18500/1816-9775-2019-19-1-4-10
  21. Ziyatdinova G. K., Zakharova S. P., Ziganshina E. R., Budnikov G. K. Voltammetric determination of flavonoids in medicinal plant materials using electrodes modifi ed by cerium dioxide nanoparticles and surfactants. J. Analyt. Chem., 2019, vol. 74, no. 8, pp. 816–824 (in Russian). https://doi.org/10.1134/S106193481908015X
  22. Mohammadi S. Z., Beitollahi H., Mousavi M. Determination of hydroxylamine using a carbon paste electrode modifi ed with graphene oxide nano sheets. Russian J. of Electrochem., 2017, vol. 53, no. 4, pp. 374–379 (in Russian). https://doi.org/10.1134/S1023193517040097
  23. Ivanov A. E., Zubov V. P. Smart polymers as surface modifi ers for bioanalytical devices and biomaterials: Theory and practice. Russian Chem. Reviews, 2016, vol. 85, no. 6, pp. 565–584 (in Russian). https://doi.org/10.1070/RCR4567
  24. Vidotti M., Torresi S. C., Kubota L. T. Electrochemical oxidation of glycine by doped nickel hydroxide modifi ed electrode. Sens. Actuators B, 2008, vol. 135, no. 1, pp. 245–249.
  25. Alekseev V. G. Bioneorganicheskaya khimiya penitsillinov i tsefalosplorinov [Bioinorganic chemistry of penicillin and cefalosporin]. Tver, Tver. gos. un-t, 2009. 104 p. (in Russian).
  26. Belyustin A. A. Potenciometriya: fi ziko-himicheskie osnovy i primeneniya [Potentiometry: physico-chemical bases and applications]. St. Petersburg, Lan Publ., 2015. 336 p. (in Russian).
Received: 
27.10.2021
Accepted: 
12.11.2021
Published: 
31.03.2022