Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Tuchina E. S., Kanevsky M. V., El-Khih A. N., Slivina Y. I. Dynamics of formation of tolerance to blue (405 nm) led radiation in Staphylococcus aureus upon repeated exposure. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 2, pp. 196-201. DOI: 10.18500/1816-9775-2024-24-2-196-201, EDN: EUHPDP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 33)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
577.344.3. 57.033
EDN: 
EUHPDP

Dynamics of formation of tolerance to blue (405 nm) led radiation in Staphylococcus aureus upon repeated exposure

Autors: 
Tuchina Elena S., Saratov State University
Kanevsky Matvey V., Saratov State University
El-Khih Ayya Nidal, Saratov State University
Slivina Yulia I., Saratov State University
Abstract: 

In this work, we studied the development of tolerance to low-intensity violet (405 nm, 80 mW/cm2 , 72 J/cm2 ) LED radiation in a clinical antibiotic-resistant strain of Staphylococcus aureus 2a. The change in numbers during 20 cycles of irradiation was studied, the reaction of bacterial cells to oxidative stress was studied – sensitivity to the presence of hydrogen peroxide in the environment and catalase activity. It was shown hat from cycles 1 to 5 there was a signifi cantly insignifi cant reduction in survival rate – from 85% to 82%, from cycles 5 to 10 of irradiation the decrease in the number of cells became more pronounced – from 82 to 63%, then, from cycles 10 to 15, recovery was noted, showing numbers to higher values (65–76%), from cycle 15 to 20, the survival value after irradiation remained at the same level (80%). It has been established that, starting from the 15th irradiation cycle, the culture becomes 2 times more resistant to the action of oxidative factors. The results obtained showed that the use of the photodynamic therapy method in practice must be approached with caution, since the formation of tolerance to the eff ects in the tagret microorganism occurs by the 15th irradiation cycle and can signifi cantly worsen the treatment results.

Reference: 
  1. Kussell E, Kishony R, Balaban N. Q., Leibler S. Bacterial persistence: A model of survival in changing environments // Genetics. 2005. Vol. 169. P. 1807–1814.
  2. Mahmoudi H., Bahador A., Pourhajibagher M., Alikhani M. Y. Antimicrobial photodynamic therapy: An effective alternative approach to control bacterial infections // J. Lasers Med. Sci. 2018. Vol. 9. P. 154–162. https://doi.org/10.15171/jlms.2018.29
  3. Youf R., Müller M., Balasini A., Thétiot F., Müller M., Hascoët A., Jonas U., Schönherr H., Lemercier G., Montier T. Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies // Pharmaceutics. 2021. Vol. 13. P. 1995–2016. https://doi.org/10.3390/pharmaceutics13121995
  4. Lipovsky A., Nitzan Y., Friedmann H., Lubart R. Sensitivity of Staphylococcus aureus strains to broadband visible light // Photochemistry and Photobiology. 2009. Vol. 85. P. 255–260.
  5. Бухарин О. В., Сгибнев А. В., Черкасов С. В., Иванов Ю. Б. Способ выявления у бактерий ингибиторов каталазы микроорганизмов. Патент РФ на изобретение № 2180353 от 10.03.2002.
  6. McKenzie G. J., Harris R. S., Lee P. L., Rosenberg S. M. The SOS response regulates adaptive mutation // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 6646–6651.
  7. Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover // J. Bacteriol. 2006. Vol. 188. P. 6739–6756.
  8. Galhardo R. S., Hastings P. J., Rosenberg S. M. Mutation as a stress response and the regulation of evolvability // Crit. Rev. Biochem. Mol. Biol. 2007. Vol. 42. P. 399–435.
  9. Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlinska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations // Biomed. Pharmacother. 2018. Vol. 106. P. 1098–1107.
  10. Pieranski M., Sitkiewicz I., Grinholc M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments // Free Radic. Biol. Med. 2020. Vol. 160. P. 657–669.
  11. Guffey J. S., Payne W., Jones T., Martin K. Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array // Photomed. Laser Surg. 2013. Vol. 31. P. 179–182.
  12. Amin R. M., Bhayana B., Hamblin M. R., Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies // Lasers Surg. Med. 2016. Vol. 48. P. 562–568.
  13. Massier S., Rince A., Maillot O., Feuilloley M. G., Orange N., Chevalier S. Adaptation of Pseudomonas aeruginosa to a pulsed light-induced stress // J. Appl. Microbiol. 2012. Vol. 112. P. 502–511. 
  14. Grinholc M., Rodziewicz A., Forys K., RapackaZdonczyk A., Kawiak A., Domachowska A., Golunski G., Wolz C., Mesak L., Becker K. Antimicrobial photodynamic therapy with fulleropyrrolidine: Photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies // Appl. Microbiol. Biotechnol. 2015. Vol. 99. P. 4031–4043.
  15. Cieplik F., Späth A., Regensburger J., Gollmer A., Tabenski L., Hiller K. A., Bäumler W., Maisch T., Schmalz G. Photodynamic biofilm inactivation by SAPYR – an exclusive singlet oxygen photosensitizer // Free Radic. Biol. Med. 2013. Vol. 65. P. 477–487.
  16.  Paronyan M. H., Koloyan H. O., Avetisyan S. V., Aganyants H. A., Hovsepyan A. S. Study of the possible development of bacterial resistance to photodynamic inactivation // Biol. J. Armen. 2019. Vol. 71. P. 17–22.
  17. Kashef N., Hamblin M. R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? // Drug Resist. Updat. 2017. Vol. 31. P. 31–42.
  18. Al-Mutairi R., Tovmasyan A., Batinic-Haberle I., Benov L. Sublethal photodynamic treatment does not lead to development of resistance // Front. Microbiol. 2018. Vol. 9. P. 1699.
Received: 
20.01.2024
Accepted: 
03.02.2024
Published: 
31.05.2024
Short text (in English):
(downloads: 19)