Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Galitskaya A. A., Akopian A. A., Dykman L. A., Bogatyrev V. A. Colormetric system for monitoring the growth of microalgae Dunaliella salina under laboratory conditions. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 1, pp. 104-109. DOI: 10.18500/1816-9775-2023-23-1-104-109, EDN: DYIHLL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 235)
Полный текст в формате PDF(En):
(downloads: 93)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
57.084.01
EDN: 
DYIHLL

Colormetric system for monitoring the growth of microalgae Dunaliella salina under laboratory conditions

Autors: 
Galitskaya Anna A., Saratov State University
Akopian Aram A., Saratov State University
Dykman L. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Bogatyrev V. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Abstract: 

The brackish microalgae Dunaliella salina, being an extremophilic halophyte, is a promising object for biotechnological production. The aim of this work is to develop a methodology for non-destructive control of the development of a microalgae culture under conditions of balanced growth during periodic cultivation on plates. Before the start of the experiment, the microalgae culture was synchronized. The quantitative content of chlorophylls a and b, as well as carotenoids, was determined spectrophotometrically in alcohol extracts. During cultivation, time-lapse images were recorded on a smartphone camera. The basis of the colorimetric evaluation is the analysis of the time series of images in the RGB color model. It is shown that the ratio of colors correlates to a high degree with the content of the determined main plant pigments – chlorophylls and carotenoids, and with the data of spectrophotometric measurements of live suspensions. The changes in the blue channel are the most pronounced, the least being in the green channel. The logarithm of color intensity is linearly dependent on the degree of dilution of the culture. The developed method for real-time monitoring of the development dynamics of the D. salina microalgae culture makes it possible to build growth curves and solve multiparametric problems to optimize the cultivation of microalgae, including when working with large arrays of samples.

Reference: 
  1. Масюк Н. П. Морфология, систематика, экология, географическое распространение рода Dunaliella Teod. и перспективы его практического использования. Киев : Наук. думка, 1973. 245 с.
  2. Oren A. The ecology of Dunaliella in high-salt environments // J. Biol. Res. 2014. Vol. 21, № 1. P. 23–31. https:// doi.org/10.1186/s40709-014-0023-y 
  3. Arun N., Singh D. P. A review on pharmacological applications of halophilic alga Dunaliella // Indian J. Geo-Mar. Sci. 2016. Vol. 45, № 3. P. 440–447.
  4. Захожий И. Г., Маталин Д. А., Попова Л. Г., Балнокин Ю. В. Ответные реакции фотосинтетического аппарата галотолерантной микроводоросли Dunaliella maritima на гиперосмотический солевой шок // Физиология растений. 2012. Т. 59, № 1. С. 48–56.
  5. Рабинович Е. Фотосинтез: в 3 т. Т. 2. М. : Изд-во иностр. лит., 1953. 652 с.
  6. Fujiki T., Taguchi S. Variability in chlorophyll a specifi c absorption coeffi cient in marine phytoplankton as a function of cell size and irradiance // J. Plankton Res. 2002. Vol. 24, № 9. P. 859–874. https://doi.org/10.1093/ plankt/24.9.859
  7. Kubín Š. In vivo chlorophyll determination in suspensions of chlorococcal algae // Arch. Protistenkd. 1991. Vol. 139, № 1–4. P. 111–116. https://doi.org/10.1016/ S00039365(11)80012-6
  8. Чеканов К. А., Соловченко А. Е. Возможности и ограничения недеструктивного оптического мониторинга культур одноклеточных зеленых водорослей при сбалансированном росте // Физиология растений. 2015. Т. 62, № 2. С. 291–300. https://doi.org/10.7868/ S0015330315010030
  9. Golubev A. A., Prilepskii A. Y., Dykman L. A., Khlebtsov N. G., Bogatyrev V. A. Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity // Toxicol. Sci. 2016. Vol. 151, № 1. P. 115–125. https://doi.org/10.1093/ toxsci/kfw023
  10. Shaish A., Mavron A., Ben-Amotz A. Effect of inhibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil // Plant Cell Physiol. 1990. Vol. 31, № 5. P. 689–696.
  11. Farhat N., Rabhi M., Falleh H., Jouini J., Abdelly C., Smaoui A. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae)(1) // J. Phycol. 2011. Vol. 47, iss. 5. P. 1072–1077. https://doi.org/10.1111/j.1529-8817.2011.01036.x 
Received: 
29.01.2023
Accepted: 
04.02.2023
Published: 
31.03.2023
Short text (in English):
(downloads: 75)