Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Kanevsky M. V., Menukhov V. O., Kosheleva I. S., Kostritsky A. Y., Kanevskaya I. V., Konnova S. A. Changes in the physicochemical and cultural properties of the bacteria Azospirillum baldaniorum Sp245 under the infl uence of some synthetic coumarins. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 2, pp. 215-225. DOI: 10.18500/1816-9775-2022-22-2-215-225

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 211)
Полный текст в формате PDF(En):
(downloads: 55)
Article type: 

Changes in the physicochemical and cultural properties of the bacteria Azospirillum baldaniorum Sp245 under the infl uence of some synthetic coumarins

Kanevsky Matvey V., Saratov State University
Menukhov Vladisla O., Federal State Budgetary Institution of Science, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Kosheleva Irina S. , Saratov Medical Research Center for Hygiene of the “Federal Scientifi c Center for Medical and Preventive Health Risk Management Technologies”
Kostritsky A. Yu., Saratov State University
Kanevskaya Irina V., Saratov State University
Konnova Svetlana Anatolyevna, Saratov State University

Due to the small number of studies on the role of coumarins in associative symbiotic relationships, some aspects of the infl uence of synthetic coumarins on the physicochemical and cultural properties of Azospirillum baldaniorum Sp245 were studied for the fi rst time. To reveal the role of hydroxylation in position 7 of the fused aromatic ring – 1-(2-oxo-2H-chromen-3-yl)butan-1,3-dione, comparative studies of the eff ect of the original and hydroxylated coumarins on the culture of a model strain of azospirilla were carried out. The survival of bacteria after the addition of coumarins was studied by counting CFU on an agar medium. The biofi lm formation activity of the culture was assessed using crystal violet. The change in the surface of bacteria under the action of coumarins was studied by the electrical polarizability of bacterial cells on an ELUS electrooptical analyzer (EloSystemGbR, Germany). The yield and monosaccharide composition of extracellular glycopolymers were studied using gas-liquid chromatography.For the fi rst time, an increase in the yield of EPS of bacteria during growth in the presence of 1-(7-hydroxy-2-oxo-2Hchromen-3-yl)butan-1,3-dione by 1.2 and 1.7 times for concentrations of 50 and 100 μM respectively was observed. It has been established for the fi rst time that the hydroxylated substance has a higher antibacterial activity compared to the unsubstituted one. A decrease in the number of viable cells in planktonic culture and inhibition of biofi lm growth were revealed. It has been shown by electro-optical analysis that the presence of coumarins in the cultivation medium in all concentrations studied leads to a change in the electrical polarizability of A. baldaniorum Sp245 cells. The use of electrooptical analysis of cell suspensions using monospecifi c antibodies obtained against lipopolysaccharides of this strain made it possible to reveal the absence of changes in carbohydrate antigenic determinants on the surface of bacterial cells. This is consistent with the data of the analysis of the composition of extracellular polysaccharides by GLC, during which no diff erences were found in the qualitative composition and ratio of monosaccharides. An increase in the yield of bacterial EPS during growth in the presence of 1-(7-hydroxy-2-oxo-2H-chromen-3-yl) butan-1,3-dione by 1.2 and 1.7 times for concentrations of 50 and 100 μM was shown. The results obtained allow us to consider the changes that have occurred as features of the adaptation of bacteria to the associative conditions of existence.

  1. 1. Venugopala K. N., Rashmi V., Odhav B. Review on natural coumarin lead compounds for their pharmacological activity // BioMed Research International. 2013. Vol. 2013, № 6. Art. № 963248.
  2. 2. Zhang J., Subramanian S., Stacey G., Yu O. Flavones and fl avonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti // The Plant Journal. 2008. Vol. 5, № 1. P. 171–183.
  3. 3. Matos M. J., Santana L., Uriarte E., Abreu O. A., Molina E., Yordi E. G. Coumarins – an important class of phytochemicals // Comprehensive Natural Products Chemistry. 2015. Vol. 45, № 5. P. 113–140.
  4. 4. Wang X., Mao Z. G., Song B. B., Chen C. H., Xiao W. W., Hu B., Wang J.-W., Jiang X.-B., Zhu Y.-H., Wang H. J. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove derived fungi in the South China Sea // Marine Drugs. 2013. Vol. 11, № 6. P. 601–3616.
  5. 5. Yu K., Stringlis I. A., Van Bentum S., De Jonge R., Snoek B. L., Pieterse C., Bakker P., Berendsen R. L. Transcriptome signatures in Pseudomonas simiae WCS417 shed light on role of root-secreted coumarins in Arabidopsis-mutualist communication // Microorganisms. 2021. Vol. 9, № 3. P. 575–590.
  6. 6. Rolfe S. A., Griffiths J., Ton J. Crying out for help with root exudates: Adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes // Current Opinion in Microbiology. 2019. Vol. 49. P. 73–82.
  7. 7. Stringlis I. A., Yu K., Feussner K., De Jonge R., Van Bentum S., Van Verk M. C., Berendsen R. L., Bakker P. A. H. M., Feussner I., Pieterse C. M. J. MYB72- dependent coumarin exudation shapes root microbiome assembly to promote plant health // Proceedings of the National Academy of Sciences. 2018. Vol. 115. P. E5213–E5222.
  8. 8. Gnonlonfi n G. J. B., Sanni A., Brimer L. Review. Scopoletin – A coumarin phytoalexin with medicinal properties // Critical Review in Plant Sciences. 2012. Vol. 31. P. 47–56.
  9. 9. Beyer S. F., Beesley A., Rohmann P. F., Schultheiss H., Conrath U., Langenbach C. J. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust // The Plant Journal. 2019. Vol. 99. P. 397–413.
  10. 10. Reen F. J. Gutiérrez-Barranquero J. A., Parages M. L., O´Gara F. Coumarin : A novel player in microbial quorum sensing and biofi lm formation inhibition // Applied Microbiology and Biotechnology. 2018. Vol. 102, № 5. P. 2063–2073.
  11. 11. Roy R., Tiwari M., Donelli G., Tiwari V. Strategies for combating bacterial biofi lms : A focus on anti-biofi lm agents and their mechanisms of action // Virulence. 2018. Vol. 9, № 1. P. 522–554.
  12. 12. Kayser O., Kolodziej H. Antibacterial activity of simple coumarins : Tructural requirements for biological activity // Zeitschrift für Naturforschung. 1999. Vol. 54, № 3-4. P. 169–174.
  13. 13. Makhloufi -Chebli M., Hamdi M., Silva A. M. S., Balegroune F. Translactonisation intramoleculaire assistee par micro-ondes. Synthese des coumarines // Journal of the Algerian Chemical Society. 2008. Vol. 18, № 1. P. 91–101.
  14. 14. De March P. Moreno-Manas M., Roca J. L. The reactions of 4-hydroxy-2-pyrones with 2-hydroxybenzaldehydes. A Note of Warning // Journal of Heterocyclic Chemistry. 1984. Vol. 21, № 5. P. 1371–1372.
  15. 15. Kostova I. Synthetic and natural coumarins as antioxidants // Mini-Reviews in Medicinal Chemistry. 2006. Vol. 6, № 4. P. 365–374.
  16. 16. Lin Y., Sun X., Yuan Q., Yan Y. Combinatorial biosynthesis of plant-specifi c coumarins in bacteria // Metabolic Engineering. 2013. Vol. 18, № 12. P. 69–77.
  17. 17. Baldani V. L. D., Baldani J. I., Döbereiner J. Effect of Azospirillum inoculation on root infection and nitrogen incorporation in wheat // Canadian Journal of Microbiology. 1983. Vol. 29. P. 924–929.
  18. 18. Santos Ferreira N. dos, Hayashi Sant’Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M., Schwab S., Baura V. A., Balsanelli E., Oliveira Pedrosa F. de, Passaglia L. M. P., Souza E. M. de, Hartmann A., Cassan F., Zilli J. E. Genome-based reclassifi cation of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov // International Journal of Systematic and Evolutionary Microbiology. 2020. Vol. 70, № 12. P. 6203–6212.
  19. 19. Konnova S. A., Skvortsov I. M., Makarov O. E., Ignatov V. V. Charactreristics of polysaccharide complexes produced by Azospirillum brasilense and of the polysaccharides derived from them // Microbiology. 1994. Vol. 63. P. 1020–1030. 
  20. 20. Методы общей бактериологии : в 3 т. / под ред. Ф. Герхардта. М. : Мир, 1983. Т. 1. 420 с.
  21. 21. Guliy O. I., Velichko N. S., Fedonenko Y. P., Bunin V. D. Use of an electro-optical sensor and phage antibodies for immunodetection of Herbaspirillum // Talanta. 2019. Vol. 202. P. 362–368.
  22. 22. Guliy O. I., Bunin V. D. Electro-optical analysis as sensing system for detection and diagnostics of bacterial cells // Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Singapore : Springer, 2020. P. 233–254.
  23. 23. Gulii O. I., Matora L. Y., Burygin G. L., Dykman L. A., Ignatov V. V., Ignatov O. V. Electrooptical properties of the microbial suspensions during a cell’s interaction with the antibodies of a different specifi city // Applied Biochemistry and Microbiology. 2010. Vol. 46, № 1. P. 61–64.
  24. 24. Dubois M., Gilles K. A., Gamillor J. K., Rebers P. Q., Smitli F. Colorimetric method for determination of sugars and related substances // Analytical Chemistry 1956. Vol. 28, № 3. P. 350–356.
  25. 25. Del Gallo M., Haegi A. Characterization and quantifi cation of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum // Symbiosis. 1990. Vol. 9. P. 155–161.
  26. 26. Sawadecker J. S., Sloneker J. H., Jeanes A. Quantative determination of monosaccharides as their alditol acetates by gas liquid chromatography // Analytical Chemistry. 1965. Vol. 37. P. 1602–1603.
  27. 27. O’Toole G. A. Kolter R. Initiation of biofi lm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways : A genetic analysis // Molecular Microbiology. 1998. Vol. 28, № 3. P. 449–461.
  28. 28. Smyth T., Ramachandran V. N., Smyth W. F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins // International Journal of Antimicrobial Agents. 2009. Vol. 33, № 5. P. 421–426.
  29. 29. Shelud’ko A. V., Filip’echeva Yu. A., Telesheva E. M., Burov A. M., Evstigneeva S. S., Burygin G. L. Petrova L. P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofi lms // Microbiology. 2018. Vol. 87, № 5. P. 610–620.
  30. 30. Burdman S., Jurkevitch E., Soria-Díaz M. E., Serrano A. M. G., Okon Y. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation // FEMS Microbiology Letters. 2000. Vol. 189, № 2. P. 259–264.
  31. 31. Fraysse N., Couderc F., Poinsot V. Surface polysaccharides involvement in establishing the rhizobium-legume symbiosis // European Journal of Biochemistry. 2003. Vol. 270. P. 1365–1380.
  32. 32. Fischer S. E., Miguel M. J., Morri G. B. Effect of root exudates on the polysaccharide composition and the lipopolysaccharide profi le of Azospirillum brasilense Cd under saline stress // FEMS Microbiology Letters. 2003. Vol. 219. P. 53–62.
  33. 33. Kanevskiy M. V., Konnova S. A., Boyko A. S., Fedonenko Y. P., Sigida E. N., Ignatov V. V. Effect of fl avonoids on the composition of surface glycopolymers of Azospirillum lipoferum Sp59b // Microbiology. 2014. Vol. 83, № 1. P. 15–22.
Short text (in English):
(downloads: 43)