Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Зудина И. В., Ведяева А. П., Булкина Н. В., Иванов П. В., Альзубаиди А. Ф. Изучение воздействия хитозана на процесс заживления костного дефекта в экспериментах in vivo и in vitro // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2016. Т. 16, вып. 2. С. 171-179. DOI: 10.18500/1816-9775-2016-16-2-171-179

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 171)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
615.466: 616.31-085

Изучение воздействия хитозана на процесс заживления костного дефекта в экспериментах in vivo и in vitro

Авторы: 
Зудина Ирина Витальевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Ведяева Анна Петрович, Саратовский государственный медицинский университет имени В. И. Разумовского
Булкина Наталья Вячеславовна, Саратовский государственный медицинский университет имени В. И. Разумовского
Иванов Петр Владимирович, Пензенский государственный медицинский университет
Альзубаиди Адавия Фадхел Аббаас, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Цель исследований in vivo и in vitro состояла в изучении молекулярных и клеточных механизмов противовоспалительного и ранозаживляющего действия барьеров из хитозана при их использовании для направленной регенерации тканей (GTR) на модели кроликов. Иммуноферментный анализ (ELISA) сыворотки крови кроликов, выполненный в динамике лечения дефектов кости альвеолярного отростка, подтвердил способность хитозана быстро купировать воспаление путем супрессии продукции цитокина ФНО. Данные, полученные в исследованиях in vitro, показывают, что хитозан стимулирует фибробласты и эпителиальные клетки к синтезу фактора роста эндотелия сосудов (VEGF) и гранулоцитарно-макрофагального колониестимулирующего фактора (GM-CSF) в раннем послеоперационном периоде. Это может иметь важные клинические последствия, поскольку успех лоскутной операции в значительной степени зависит от срока инициации ангиогенеза и неоваскуляризации.

Список источников: 

1.   Грудянов А. И., Чупахин П. В. Методика направленной регенерации тканей. Подсадочные материалы. М. : ООО «Медицинское информационное агентство», 2007. 64 с.

2.   Булкина Н. В., Ведяева А. П., Токмакова Е. В., Попкова О. В. Опыт применения аскорбата хитозана в комплексной терапии заболеваний пародонта // Саратовский научно-медицинский журн. 2013. Т. 9, № 3. С. 372-375.

3.   Зудина И. В., Булкина Н. В., Иванов П. В., Ведяева А. П., Иванова Е. В. Противовоспалительный эффект аскорбата хитозана в комплексной терапии заболеваний пародонта // Рос. стоматол. журн. 2013. № 2. С. 16-19.

4.   Способ лечения хронического катарального гингивита : пат. 2240770 РФ / Солнцев А. С., Большаков И. Н., Старостенко Т. Д., Майгуров А. А., Насибов С. М. Опубл. 2004. 5.   Способ лечения хронического пародонтита: пат. 2301064 РФ / Большаков И. Н., Солнцев А. С., Майгуров А. А., Насибов С. М., Еремеев А. В. Опубл. 2005.

6.   Иванов П. В. Патогенетическое обоснование и внедрение в практику новых регенеративных методов лечения генерализованного пародонтита : автореф. дис. ... д-ра мед. наук. Саратов, 2013. 51 с.

7.   Asahara T., Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J. M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization // Circ Res. 1999. Vol. 85, № 3. Р. 221-228.

8.   Hoeben A., Landuyt B., Highley M. S., Wildiers H., Van Oosterom A. T., De Bruijn E. A. Vascular endothelial growth factor and angiogenesis // Pharmacol. Rev. 2004. Vol. 56, № 4. Р. 549-580.

9.   Hoemann C. D., Chen G., Marchand C., Tran-Khanh N., Thibault M., Chevrier A., Sun J., Shive M. S., Fernandes M. J., Poubelle P. E., Centola M., El-Gabalawy H. Scaffold-guided subchondral bone repair : implication of neutrophils and alternatively activated arginase-1+ macrophages // Amer. J. Sports Med. 2010. Vol. 38, № 9. Р. 1845-1856.

10.  Schraufstatter I. U., Zhao M., Khaldoyanidi S. K., Discipio R. G. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum // Immunology. 2012. Vol. 135, № 4. Р. 287–298.

11.  Eaton K. V., Yang H. L., Giachelli C. M., Scatena M. Engineering macrophages to control the in? ammatory response and angiogenesis // Exp. Cell Res. 2015. Vol. 339, № 2. Р. 300-309.

12. Ono M., Inkson C. A., Kilts T. M., Young M. F. WISP-1/ CCN4 regulates osteogenesis by enhancing BMP-2 activity // J. Bone Miner Res. 2011. Vol. 26, № 1. Р. 193-208.

13. Khan U. A., Hashimi S. M., Bakr M. M., Forwood M. R., Morrison N. CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells // J. Cell Biochem. 2016. Vol. 117, № 2. Р. 382-389.

14. Endo I., Mitsui T., Nishino M., Oshima Y., Matsumoto T. Diurnal ? uctuation of edema synchronised with plasma VEGF concentration in a patient with POEMS syndrome // Intern. Med. 2002. Vol. 41. P. 1196–1198.

15. Henriksen K., Karsdal M., Delaisse J. M., Engsig M. T. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2dependent mechanism // J. Biol. Chem. 2003. Vol. 278. P. 48745–48753.

16. Yang Q. VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin // Matrix Biol. 2008. Vol. 27. Р. 589–599.

17. Kaplan R. N., Riba R. D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D. D., Jin D. K., Shido K., Kerns S. A., Zhu Z., Hicklin D., Wu Y., Port J. L., Altorki N., Port E. R., Ruggero D., Shmelkov S. V., Jensen K. K., Ra? i S., Lyden D. VEGFR1positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche // Nature. 2005. Vol. 438. P. 820–827.

18. Eubank T. D., Roberts R., Galloway M., Wang Y., Cohn D. E., Marsh C. B. GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice // Immunity. 2004. Vol. 21, № 6. Р. 831-842.

19. Roda J. M., Wang Y., Sumner L. A., Phillips G. S., Marsh C. B., Eubank T. D. Stabilization of HIF-2? induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model // J. Immunol. 2012. Vol. 189, № 6. Р. 3168-3177.

20. Zhao J., Chen L., Shu B., Tang J., Zhang L., Xie J., Liu X., Xu Y., Qi S. Granulocyte/Macrophage ColonyStimulating Factor In? uences Angiogenesis by Regulating the Coordinated Expression of VEGF and the Ang/ Tie System // PLoS ONE. 2014. Vol. 9, № 3. e92691.

21. Yan H., Chen J., Peng X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds // Burns. 2012. Vol. 38. Р. 877–881.