Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Данилина Т. Г., Сярдина А. В., Тимонова Е. Р., Неврюева Н. В., Смирнова Т. Д. Перенос энергии возбуждения в комплексах европия с доксициклином в присутствии мицелл поверхностно-активных веществ и наночастиц серебра // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2024. Т. 24, вып. 4. С. 364-373. DOI: 10.18500/1816-9775-2024-24-4-364-373, EDN: DQGJAQ

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 17)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
543.426
EDN: 
DQGJAQ

Перенос энергии возбуждения в комплексах европия с доксициклином в присутствии мицелл поверхностно-активных веществ и наночастиц серебра

Авторы: 
Данилина Татьяна Григорьевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Сярдина Алина Владимировна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Тимонова Екатерина Романовна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Неврюева Наталия Владимировна, Саратовский государственный медицинский университет имени В. И. Разумовского
Смирнова Татьяна Дмитриевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Доксициклин относится к антибиотикам тетрациклинового ряда с широким спектром действия, используется для лечения инфекций у людей, в ветеринарии – в качестве препаратов профилактического действия, стимуляторов роста. По этой причине остаточные количества антибиотиков в молоке, мясе и других продуктах питания могут вызывать резистентность, развитие аллергии. В этой связи требуется постоянный контроль остаточных содержаний тетрациклинов в пищевых продуктах, объектах окружающей среды, биологических жидкостях. Целью настоящей работы явилось изучение влияния сферических наночастиц серебра и мицелл поверхностно-активных веществ на интенсивность сенсибилизированной флуоресценции комплексов ионов европия с доксициклином и разработка нового чувствительного и простого способа флуориметрического определения доксициклина в растворах. В результате одновременного воздействия энергии внешнего источника возбуждения и поверхностного плазмонного резонанса наночастиц серебра на доксициклин происходит возрастание интенсивности его флуоресценции. Вероятность перехода лиганда в возбужденное состояние значительно возрастает, что способствует наиболее эффективной реализации внутримолекулярного переноса энергии возбуждения в комплексе Eu3+ с доксициклином. Нами показано, что в присутствии наночастиц серебра и ионов Eu3+ интенсивность флуоресценции аналитической системы, содержащей доксициклин, возрастает в 125 раз. В присутствии неионогенного поверхностно-активного вещества Твин-80 сигнал сенсибилизированной флуоресценции хелата Eu3+ с доксициклином увеличивается более, чем в 19 раз. Солюбилизация компонентов аналитической реакции в мицеллы поверхностно-активных веществ способствует изменению их протолитических свойств, дегидратации, увеличению устойчивости комплексов, эффективности внутримолекулярного переноса энергии. При совместном присутствии мицелл поверхностно-активного вещества Твин-80 и наночастиц серебра наблюдается дополнительное увеличение интенсивности флуоресценции хелата иона металла с доксициклином в 27 раз. На основании проведенных исследований предложен способ флуориметрического определения доксициклина с использованием мицелл Твин-80, нанокластеров серебра и ионов Eu3+ в природной воде. Диапазон определяемых концентраций 1.0·10-7 – 1.0·10-5 М, предел обнаружения (ПрО) 6.0·10-8 М (3 σ). Правильность определения контролировали методом «введено–найдено».

Список источников: 
  1. Tan H., Chen Y. Silver nanoparticle enhanced fl uorescence of europium (III) for detection of tetracycline in milk // Sensors and Actuators B. 2012. Vol. 173. P. 262–267. https://doi.org/10.1016/j.snb.2012.06.090
  2. Navratilova P., Borkovcova I., Drackova M., Janstova B., Vorlova L. Occurrence of tetracycline, chlortetracycline and oxytetracycline residues in raw cow’s milk // Czech J. Food Sci. 2009. Vol. 27, № 5. P. 379‒385. https://doi.org/10.17221/177/2008-CJFS
  3. Zhou J., Xue X., Li Y., Zhang J., Chen F., Wu L., Chen L., Zhao J. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction // Food Chem. 2009. Vol. 115, № 3. P. 1074‒1080. https://doi.org/10.1016/j.foodchem.2008.12.031
  4. Cinquina A. L., Longo F., Anastasi G., Giannetti L., Cozzani R. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle // J. Chromatogr. A. 2003. Vol. 987. P. 277‒233. https://doi.org/10.1016/S0021-9673(02)01446-2
  5. Fritz J. W., Zuo Y. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography // Food Chem. 2007. Vol. 105, № 3. P. 1297‒1301. https://doi.org/10.1016/j.foodchem.2007.03.047
  6. Hirschy L. M., van Geel T. F., Winefordner J. D. Characteristics of the binding of europium(III) to tetracycline // Anal. Chim.Acta. 1985. Vоl. 166. P. 207–219.
  7. Паращенко И. И., Смирнова Т. Д., Штыков С. Н., Кочубей В. И., Жукова Н. Н. Твердофазная, сенсибилизированная доксициклином, флуоресценция европия на силикагеле в присутствии ПАВ // Журн. аналит. химии. 2013. Т. 68, № 2. С. 125–129. https://doi.org/10.7868/S0044450213020126
  8. Штыков С. Н. Химический анализ в нанореакторах: основные понятия и применение // Журн. аналит. химии. 2002. Т. 57, № 10. С. 1018‒1028. ID: 23520679. EDN: TUSHAZ
  9. Штыков С. Н., Смирнова Т. Д., Молчанова Ю. В. Синергетические эффекты в системе европий теноилтрифторацетон-1.10-фенантролин в мицеллах блоксополимеров неионных ПАВ и их аналитическое применение // Журн. аналит. химии. 2001. Т. 56, № 10. С. 1052–1056. ID: 25074704. EDN: VCSLOX
  10. Hongliang T., Yang C. Silver nanoparticle enhanced fl uorescence of europium (III) for detection of tetracycline in milk // Sensors and Actuators B. 2012. Vol. 173. P. 262–267. https://doi.org/10.1016/j.snb.2012.06.090
  11. Смирнова Т. Д., Желобицкая E. A., Данилина Т. Г. Люминесцентные свойства доксициклина в присутствии наночастиц серебра, модифицированных ионами европия // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2017. Т. 17, вып. 4. С. 370–375. https://doi.org/10.18500/1816-9775-2017-17-4-370-375
  12. Смирнова Т. Д., Желобицкая Е. А., Данилина Т. Г. Влияние поверхностного плазменного резонанса на флуориметрические свойства молекул и комплексов // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2017. Т. 17, вып. 2. С. 132–137. https://doi.org/10.18500/1816- 9775-2017-17-2-132-137
  13. Смирнова Т. Д., Желобицкая Е. А., Данилина Т. Г., Симбирева Н. А. Флуоресцентные свойства доксициклина в присутствии нанокластеров серебра // Известия вузов. Химия и химическая технология. 2021. Т. 64, № 1. С. 34–40. https://doi.org/10.6060/ivkkt.20216401.6249
  14. Smirnova T. D., Shtykov S. N., Zhelobitskaya E. A. Energy transfer in liquid and solid nanoobjects: Application in luminescent analysis // Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry. Pt. II: Application in spectrometric methods. Ch. 5 / ed. S. Shtykov. Berlin, Germany : De Gruyter., 2018. P. 131–151.
  15. Wang P., Wu T.-H., Zhang Y. Novel silver nanoparticleenhanced fluorometric determination of trace Tetracyclines in aqueous Solutions // Talanta. 2015. Vol. 146. P. 175–180. https://doi.org/10.1016/j.talanta.2015.07.065
  16. Wang P., Hong Q., Liu M., Yuan H., Peng Y., Zhao J. Rapid detection of doxycycline content in duck meat by using silver nanoparticles and alkylphenols polyoxyethylene enhanced fl uorescence of europium complex // Spectroscopy Letters. 2016. Vol. 49, № 9. P. 563–567. https://doi.org/10.1080/00387010.2016.1167088
  17. Крутяков Ю. А., Кудринский А. А., Оленин А. Ю., Лисичкин Г. В. Синтез и свойства наночастиц серебра: достижения и перспективы // Успехи химии. 2008. T. 77, № 3. С. 233–257. https://doi.org/10.1070/RC2008v077n03ABEH003751
  18. Uivarosi V. Metal complexes of quinolone antibiotics and their applications: An update // Molecules. 2013. Vol. 18, № 9. P. 11153–11197. https://doi.org/10.3390/molecules180911153
  19. Бабушкина T. A., Грошева В. И., 3олин В. Ф., Коренева Л. Г. Изучение комплексообразования тетрациклина с ионами лантаноидов методами оптической и ЯМР-спектроскопии // Координационная химия. 1997. Т. 23, № 9. С. 709–711. ID: 13268398, EDN: LEJEBZ
  20. Смирнова Т. Д., Штыков С. Н., Кочубей В. И., Крючкова Е. С. Перенос энергии возбуждения в хелате европия с доксициклином в присутствии второго лиганда в мицеллярных растворах неионогенных ПАВ // Оптика и спектроскопия. 2011. Т. 110, № 1. С. 65–71. ID: 15598899, EDN: NDJCYN
Поступила в редакцию: 
25.06.2024
Принята к публикации: 
08.07.2024
Опубликована: 
25.12.2024
Краткое содержание:
(загрузок: 14)