Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 69)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
579.835: 577.114.083: 577.114.4: 577.114.7: 577.118

Biosorption of Cu (II) by an Exopolysaccharide Isolated from Enterobacter Cloacae K7

Autors: 
Grinev Vyacheslav Sergeevich, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Fedonenko Yulia P., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Lyubun E. V., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Neshko А. А., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Kryuchkova E. V., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Turkovskaya Olga V., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Abstract: 

An extracellular polysaccharide (EPS) produced by the gram- negative nonpathogenic rhizosphere bacteria Enterobacter cloa- cae K7 was isolated and characterized. The process of biosorption of Cu(II) cations from aqueous solution by the isolated exopoly- saccharides was investigated. The maximum sorption capac- ity was 0.17 mM/mg of EPS or 12 g of Cu(II) per g of EPS at pH 5, T = 25 °C, and incubation for 30 min. The experimental values of the adsorption of Cu(II) cations (Qexp) by the biosorbent were comparable to the maximum possible value of adsorption (Qmax = 0.18 mM) calcu- lated by using the Langmuir equation. The degree of affinity between EPS being examined and Cu(II) cations was high (2.04 mmol l?1). The obtained data are of practical importance for the development of a technology for the remediation of water bodies from heavy metals. 

Reference: 

1. Gadd G. M. Heavy metal accumulation by bacteria and other microorganisms // Experientia. 1990. Vol. 46, iss. 8. P. 834–840. 

2. De Philippis R., Colica G., Micheletti E. Exopolysaccharide producing cyanobacteria in heavy metal removal from water : molecular basis and practical applicability of the biosorption process // Appl. Microbiol. Biotechnol. 2011. Vol. 92. P. 697–708. 

3. Sponza D. T. Extracellular polymer substances and physicochemical properties of fl ocs in steady and unsteadystate activated sludge systems // Process Biochem. 2002. Vol. 37. P. 938–998. 

4. Pal A., Paul A. K. Microbial extracellular polymeric substances : central elements in heavy metal bioremediation // Indian J. Microbiol. 2008. Vol. 48. P. 49–64. 

5. Geddi J. L., Sutherland I. W. Uptake of metals by bacterial polysaccharides // J. Appl. Bacteriol. 1993. Vol. 74. P. 467–472. 

6. Wingender J., Neu T. R., Flemming H. C. Microbial extracellular polymeric substances : characterisation, structure and function // Berlin : Springer, 1999. 123 pp.

7. Bridge T. A. M., White C., Gadd G. M. Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorance // Microbiology. 1999. Vol. 145. P. 2987–2995. 

8. Guibaud G., Tixier N., Bouju A., Baudu M. Relationbetween extracellular polymers composition and its ability to complex Cd, Cu and Pb // Chemosphere. 2003. Vol. 50. P. 1701–1710. 

9. Liu Y., Lam M. C., Fang H. H. P. Adsorption of heavy metals by EPS of activated sludge // Water Sci. Technol. 2001. Vol. 43. P. 59–66. 

10. Vijayaraghavan K., Yeoung-Sang Y. Bacterial biosorbents and biosorption // Biotechnol. Adv. 2008. Vol. 26. P. 266–291. 

11. Her nandez A., Mellado R.P., Martinez J. L. Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae // Appl. Environ. Microbiol. 1998. Vol. 64. P. 4317–4320. 

12. Suri ya J., Bharathiraja S., Rajasekaran R. Biosorption of Heavy Metals by Biomass of Enterobacter Cloacae Isolated from Metal-Polluted Soils // Inter. J. Chem. Tech. Res. 2013. Vol. 5, iss. 3. P. 1329–1338. 

13. Iyer A., Mody K., Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloacaee // Mar. Pollut. Bull. 2004. Vol. 49. P. 974–977. 

14. Lu W.-B., Shi J.-J., Wang C.-H., Chang J. S. Biosorption of lead, copper and cadmium by indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance // J. Hazard. Mater. 2006. Vol. B134. P. 80–86. 

15. Naik M. M., Pandey A., Dubey S. K. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B // Biodegradation. 2012. Vol. 23. P. 775–783. 

16. Материалы к разработке Государственной программы «Водная стратегия России» // Аналитический вестн. Сер.: Экономическая политика. М., 2008. Вып. 6. URL: http://iam.duma.gov.ru/node/8/4454/14654 (дата обращения: 10.06.2014). 

17. Kryuchkova Y. V., Burygin G. L., Gogoleva N. E., Gogolev Y. V., Chernyshova M. P., Makarov O. E., Fedorov E. E., Turkovskaya O. V. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7 // Microbiol. Res. 2013. Vol. 169, iss.1. P. 99–105. 

18. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning : a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press, 1989. 

19. Федоненко Ю. П., Здоровенко Э. Л., Коннова С. А., Игнатов В. В., Шляхтин Г. В. Сравнительная характеристика липополисахаридов и О-специфических полисахаридов Azospirillum brasilense Sp245 и его омегон-Km мутантов КМ018 и КМ252 // Микробиология. 2004. Т. 73, № 2. С. 180–187. 

20. Konnova S. A., Makarov O. E., Skvortsov I. M., Ignatov V. V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions // FEMS Microbiol. Lett. 1994. Vol. 118. P. 93–99. 

21. O’Neill M. A., Morris V. J., Selvendran R. R., Suther land I. W., Taylor I. T. Structure of the extracellular gelling polysaccharide produced by Enterobacter (NCIB 11870) species // Carbohydr. Res. 1986. Vol. 148, iss. 1. P. 63–69. 

22. Isobe Y. I., Matsumoto Y., Yokoigawa K., Kawai H. Properties of an Ex tracellular Polysac-charide Produced by a Strain of Enterobacter Isolated from Pond Water // Biosci. Biotechnol. Biochem. 2001. Vol. 65, iss. 6. P. 1399–1401. 

23. Mayer H., Tharanathan R. N., Weckesser J. Analysis of lipopolysaccharides of Gram-negative bacteria // Methods Microbiol. 1985. Vol. 18. P. 157–207. 

24. Naik M. M., Pandey A., Dubey S. K. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B // Biodegradation. 2012. Vol. 23, iss. 5. P. 775–783.

25. O’Neill M. A., Morris V. J., Selvendran R. R., et al. Structure of the extracellular gelling polysaccharide produced by Enterobacter (NCIB 11870) species // Carbohydr. Res. 1986. Vol. 148, iss. 1. P. 63–69. 

26. Isobe Y., Matsumoto Y., Yokoigawa K. et al. Properties of an extracellular polysaccharide produced by a strain of Enterobacter isolated from pond water // Biosci. Biotechnol. Biochem. 2001. Vol. 65, iss. 6. P. 1399–1401. 

27. Meade M. J., Tanenbaum S. W., Nakas J. P. Optimization of novel extracellular polysacchar ide production by an Enterobacter sp. on wood hydrolysates // Appl. Environ. Microbiol. 1994. Vol. 60, № 4. P. 1367–1369.

28. Kratochvil D., Volesky B. Advances in biosorption of heavy metals // Trends Biotechnol. 1998. Vol. 16, iss. 7. P. 291–300. 

29. Veglio F. Modelling of equilibrium heavy metal biosorption data at different pH: a possible methodological approach // Eur. J. Mineral Process. Environ. Protect. 2003. Vol. 3, № 1. P. 49–57. 

30. Tunali S., Cabuk A., Tamer A. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil // Chem. Eng. J. 2006. Vol. 115. P. 203–211. 

31. Фридрихсберг Д. А. Курс коллоидной химии. СПб. : Химия, 1995. С. 150–178.