Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

Full text:
(downloads: 82)
Article type: 

Effect of Surface Plasmon Resonance in the Fluorometric Properties of Molecules and Complexes

Smirnova Tatiana D., Saratov State University
Zhelobitskaya Elena Alexandrovna, Saratov State University
Danilina Tatiana Grigorievna, Saratov State University

The optical properties of noble metal nanoparticles feature the pres- ence of a pronounced resonance band in the visible light spectrum, called the surface plasmon resonance band. The influence of local surface plasmons on the dynamics of singlet–triplet energy transfer in the donor–acceptor pair is the subject of recent active studies by analysts in connection with the prospective using of nanoparticles in optosensorics and the opportunity of significant improvements of the metrological characteristics of analytical techniques. As a result of the action of an electromagnetic wave on the metallic surface of a nanoparticle, a local electric field appears which contributes to an increased rate of the fluorescence attenuation of the particle near the surface and to a changed intensity of the exciting radiation. The phenomenon of two different mechanisms of the plasmon resonance action on the fluorescent properties of a fluorophore molecule is of undoubted interest to the analytical sensor designers. Within the frame- work of a brief review paper, we examine the original techniques for fluorimetric analysis of biologically active fluorophores and toxic metal ions by using silver and gold nanoparticles based on the processes of transfer and energy exchange of electronic excitation. Peculiarities of the modification of the fluorescent properties of fluorophores due to the surface plasmon resonance effect, the enhanced fluorescent properties and fluorescence quenching, and the increased efficiency of intramolecular energy transfer in REE complexes are revealed. Our literature data analysis has shown that some specific effects of the action of local surface plasmons on the energy transfer dynamics of electronic excitation open the prospect of a significant increase in the sensitivity and selectivity of analytical techniques. The use of noble metal nanoparticles in optosensorics would allow to expand the range of detectable biologically active substances and to diversify the nomenclature of analyzed objects.


1. Векшин Н. Л. Перенос возбуждения в макромолекулах. М : ВИНИТИ, 2007. 176 с.
2. Экспериментальные методы химической кинетики / под ред. Н. М. Эмануэля, Г. Б. Сергеева. М. : Высш. шк., 1980. 375 с.
3. Ghosh D., Chattopadhyay N. Gold and silver nanoparticlebased Superquenching of fluorescence : A review // J. Lumin. 2015. Vol. 160. P. 223–232.
4. Tan S.-Z., Hu Y.-J., Gong F.-C., Cao Z., Xia J.-Y., Zhang L. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers // Analyt. Chim. Acta. 2009. Vol. 636, № 2. P. 205–209.
5. Farzampour L., Amjadi M. Sensitive turn-on fluorescence assay of methimazole based on the fluorescence resonance energy transfer between acridine orange and silver nanoparticles // J. Lumin. 2014. Vol. 155. P. 226–230.
6. Zhu S., Zhao X., Wei Zhang W., Liu Z., Qi W., Anjum S., Xu G. Fluorescence detection of glutathione reductase activity based on deoxyribonucleic acid-templated silver nanoclusters // Anal. Chim. Acta. 2013. Vol. 786. P. 111– 115.
7. Dadmehr M., Hossein M., Hosseinkhani S., Ganjali M.R., Sheikhnejad R. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for Cancer early diagnosis // Biosens. Bioelectron. 2015. Vol. 73. P. 108–113.
8. Contino A., Maccarrone G., Zimbone M., Reitano R., Musumeci P., Calcagno L., Oliveri I. Tyrosine capped Silver Nanoparticles: a new fluorescent sensor for the quantitative determination of copper (II) and cobalt (II) ions // J. Colloid Interface Sci. 2016. Vol. 462. P. 216–222.
9. Amjadi M., Farzampour L. Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application // J. Lumin. 2014. Vol. 145. P. 263–268.
10. Abdullah Z., Bukhari A.N., Haider S., Wabaidur S. M., Alwarthan A.A. Spectrofluorimetric determination of fexofenadine hydrochloride in pharmaceutical preparation using silver nanoparticles // Arab. J. of Chem. Vol. 3. P. 251–255.
11. Chen N. Y., Li H. F., Gao Z. F., Qu F., Li N. B., Luo H. Q. Utilizing polyethyleneimine-capped silver nanoclusters as a new fluorescence probe for Sudan I-IV sensing in ethanol
based on fluorescence resonance energy transfer // Sens. Actuators. B. 2014. Vol. 193. P. 730–736.
12. Falco W. F., Queiroz A. M., Fernandes J., Botero E. R., Falcao E. A., Guimaraes F. E. G., M’Peko J. -C., Oliveira S. L., Colbeck I., Caires A. R. L. Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching // J. Photochem. Photobiol. A. 2015. Vol. 299. P. 203–209.
13. Sun X., Liu B., Li S., Fang Li F. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles // Spectrochim. Acta. A. 2016. Vol. 161. P. 33–38.
14. Bagalkot V., Zhang L. F., Levy-Nissenbaum E., Jon S. Y., Kantoff P. W., Langer R., Farokhzad O. C. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bifluorescence resonance energy transfer // Nano Lett. 2007. Vol. 7. P. 3065–3070.
15. Medintz I. L., Clapp A. R., Mattoussi H., Goldman E. R., Fisher B., Mauro J. M. Selfassembled nanoscale biosen- Химия 137 sors based on quantum dot FRET donors // Nat. Mater.
2002. Vol. 9. P. 630–638.
16. Крутяков Ю. А., Кудринский А. А., Оленин А. Ю., Лисичкин Г. В. Синтез и свойства наночастиц серебра : достижения и перспективы // Успехи химии. 2008. Т. 77, № 3. C. 242–269.
17. Lakowicz J.R., Ray K., Chowdhury M., Szmacinski H., Fu Y., Zhang J., Nowaczyk K. Plasmon-controlled fluorescence : a new paradigm in fluorescence spectroscopy // Analyst. 2008. Vol. 133. P.1308–1346.
18. Lessard-Viger M., Rioux M., Rainville L., Boudreau D. FRET enhancement in multilayer core-shell nanoparticles // Nano Lett. 2009. Vol. 9. P. 3066–3071.
19. Ji X. H., Song X. N., Li J., Bai Y. B., Yang W. S., Peng X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate // J. Amer. Chem. Soc. 2007. Vol. 129. P. 13939–13948.
20. Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited // J. Phys. Chem. B. 2006. Vol. 110. P. 15700–15707.
21. Nguyen D. T., Kim D. -J., So M. G., Ki K.- S. Experimental measurements of gold nanoparticle nucleation and growth by citrate reduction of HAuCl4 // Adv. Powder Technol. 2010. Vol. 21. P. 111–118.
22. Polte J., Ahner T. T., Delissen F., Sokolov S., Emmerling F., Thunemann A. F., Kraehnert R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation // J. Amer. Chem. Soc. 2010. Vol. 132. P. 1296–1301.
23. Pong B. K., Elim H. I., Chong J. X., Ji W., Trout B. L., Lee J. Y. New insights on the nanoparticle growth mechanism in the citrate reduction of gold (III) salt: Formation of the Au nanowire intermediate and its nonlinear optical properties // J. Phys. Chem. 2007. Vol. 111. P. 6281–6287.
24. Uppal M. A., Kafizas A., Ewing M. B., Parkin I. P. The effect of initiation method on the size, monodispersity and shape of gold nanoparticles formed by the Turkevich method // New J. Chem. 2010. Vol. 34. P. 2906–2914.
25. Uppal M. A., Kafizas A., Lim T. H., Parkin I. P. The extended time evolution size decrease of gold nanoparticles formed by the Turkevich method // New J. Chem. 2010. Vol. 34. P. 1401–1407.
26. Tan H., Chen Y. Silver nanoparticle enhanced fluorescence of europium (III) for detection of tetracycline in milk // Sens. Actuators. B. 2012. Vol. 173. P. 262–267.
27. Li H., Wu X. Silver nanoparticles-enhanced rare earthco luminescence effect of Tb (III)–Y(III)–dopamine system // Talanta. 2015. Vol. 138. P. 203–208.
28. Liu P., Zhao L., Wu X., Huang F., Wang M., Liu X. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application // Spectrochim. Acta. A. 2014. Vol. 122. P. 238–245.
29. Wang P., Wu T.-H., Zhang Y. Novel silver nanoparticleenhanced fluorometric determination of trace Tetracyclines in aqueous Solutions // Talanta. 2016. Vol. 146. P. 175–180.
30. Sui N., Wang L., Yan T., Liu F., Sui J., Jiang Y., Wan J., Liu M., Yua W. W. Selective and sensitive biosensors based on metal-enhanced fluorescence // Sens. Actuators. B. 2014. Vol. 202. P. 1148–1153.
31. Ding F., Zhao H., Jin L., Zheng D. Study of the influence of silver nanoparticles on the second-order scattering and the fluorescence of the complexes of Tb(III) with quinolones and determination of the quinolones // Anal. Chim. Acta. 2006. Vol. 566. P. 136–143.
32. Cao Y., Wu X., Wang M. Silver nanoparticles fluorescence enhancement effect for determination of nucleic acids with kaempferol–Al(III) // Talanta. 2011. Vol. 84. P. 1188–1194.
33. Cheng Z.H., Li G. Metal-enhanced fluorescence effect of Ag and Au nanoparticlesmodified with rhodamine derivative in detecting Hg2+ // Sens. Actuators. B. 2015. Vol. 212. P. 495 504.

34. Li H., Zhao Y., Chen Z., Xu D. Silver enhanced ratiometric nanosensor based on two adjustable Fluorescence Resonance Energy Transfer modes for quantitative protein sensing // Biosens. Bioelectron. 2017. Vol. 7. P. 428–432.
35. Huang X., Ren J. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker // Anal. Chim. Acta. 2011. Vol. 686, № 1–2. P. 115–120.
36. Majumder P., Sarkar R., Shaw A. K., Chakraborty A., Pal S. K. Ultrafast dynamics in a nanocage of enzymes: Solvation and fluorescence resonance energy transfer in reverse micelles // J. Colloid Interface Sci. 2005. Vol. 290, № 2. P. 462–474.
37. Malicka J., Gryczynski I., Fang J., Kusba J., Lakowicz J. R. Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles // Anal. Biochem. 2003. Vol. 315, №2. P. 160–169.
38. Li H., Xu D. Silver nanoparticles as labels for applications in bioassays // Trends Anal. Chem. 2014. Vol. 61. P. 67–73.