Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

Full text:
(downloads: 77)
Article type: 
579.835: 577.114: 612

The Influence of Growth Conditions of Bacteria Azospirillum lipoferum Sp59b on the Biological Activity of Their Glycopolymers

Surkina A. K., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Konnova Svetlana Anatolyevna, Saratov State University
Fedonenko Yulia P., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

It is well known that lipopolysaccharides (LPSs) from outer membranes and capsular polysaccharides of Gram-negative bacteria activate in- nate immune system of humans and mammals and can produce septic shock clinical signs. A beneficial effect of LPSs consists in moderate stimulation of production of endogenous mediators by immune system cells, thus increasing the resistance of the organism to infections. In this respect the development of non-toxic derivatives of bacterial glycopolymers with improved immunostimulary properties becomes urgent. Therefore, the aim of our research was to evaluate the influence of the growth conditions of bacteria Azospirillum lipoferum Sp59b on the biological activity of their glycans. Using the experimental models of mouse macrophages and human whole blood cells (in vitro), we made a comparative study on the immunostimulatory properties of eight glycopolymers of A. lipoferumSp59b grown under different cultivation conditions. For the first time, it has been shown that biopolymer and fatty acid compositions of these glycanes depend on the source of nitrogen and carbon and on the growth phase. It was elucidated that alteration of growth conditions led to significant rearrangements in the lipid A structures of the LPSs and dramatically changed their ability to stimulate mouse macrophage enzymes and synthesis of the main proinflomatory cytokines in human whole blood cells.


1. Holst O., Ulmer A., Brade H., Flad H. D., Rietschel E. T. Biochemistry and cell biology of bacterial endotoxins // EMS Immunol. Med. Microbiol. 1996. Vol. 16. P. 83–104.
2. Moresco E., LaVine D., Beutler B. Toll-like receptors // Curr. Biol. 2011. Vol. 21, №13. P. 488–493.
3. Heumann D., Roger T. Initial responses to endotoxins and Gram-negative bacteria // Clin. Chim. Acta. 2002. Vol. 323. P. 59–72.
4. Alexander C., Rietschel E. Bacterial lipopolysaccharides and innate immunity // J. Endotoxin. 2001. Vol. 7, № 3. P. 167–202.
5. Rietschel E., Kirikae T., Schade F., Mamat U., Schmidt G., Loppnow H., Ulmer A., Zahringer U., Seydel U., Di Padova F., Schreier M., Brade H. Bacterial endotoxin :
molecular relationships of structure to activity and function // FASEB J. 1994. Vol. 8. P. 217–225.
6. Slocum С., Coats S. R., Hua N., Kramer C., Papadopoulos G., Weinberg E. O., Gudino C. V., Hamilton J. A., Darveau R. P., Genco C.A. Distinct lipid A moieties contribute to pathogen-induced site-specific vascular inflammation // PLoS Pathog. 2014. Vol. 10. e1004215.
7. Суркина А. К., Бойко А. С. Характеристика липополисахаридов бактерий Azospirillum brasilense 54, выращенных на средах с разными источниками Биология 183 азота // Симбиоз-Россия 2010 : III Всерос. с междунар. участием конгресс студентов и аспирантов-биологов (Н. Новгород, 24–28 мая 2010 г.). Н. Новгород, 2010. С. 76.
8. Sadasivan L., Neyra C. A. Flocculation in Azospirillum brasilense and Azospirillum lipoferum : exopolysaccharides and cyst formation // J. Bacteriol. 1985. Vol. 163, № 2. Р. 716–723.
9. Коннова С. А., Федоненко Ю. П., Макаров О. Е., Игнатов В. В. Исследование влияния условий выращивания бактерий Azospirillum brasilense на состав внеклеточных полисахаридсодержащих материалов // Изв. Рос. академии наук. Сер. Биологическая. 2003. № 4. С. 430–437.
10. Суркина А. К., Коннова С. А., Федоненко Ю. П., Игнатов В. В. Гликополимеры бактерий рода Azospirillum как перспективные антагонисты классических эндотоксинов // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2013. Т. 13, вып. 2. С. 78–85.
11. Вестфаль О., Янн К. Бактериальные липополисахариды // Методы химии углеводов / под ред. Н. К. Кочеткова. М. : Мир, 1967. С. 325–332.
12. Кonnova S. A., Makarov O. E., Skvortsov I. M., Ignatov V. V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions // FEMS Microbiol. Lett. 1994. Vol. 118. P. 93–100.
13. Mayer H., Tharanathan R., Weckesser J. Analysis of lipopolysaccharides of gram-negative bacteria // Meth. Microbiol. 1985. Vol.18. P. 157–207.
14. Иммунология. Практикум : учеб. пособие / под ред. Л. В. Ковальчука, Г. А. Игнатьевой, Л. В. Ганковской. М. : ГЭОТАР-Медиа, 2010. 176 с.
15. Huang J., Milton A., Arnold R.D., Huang H., Smith F., Panizzi J. R., Panizzi P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems // J. Leukoc Biol. 2016. Vol. 99, № 4. Р. 541–548.
16. Wu C. H., Chen T. L., Chen T. G., Ho W. P., Chiu W. T., Chen R. M. Nitric oxide modulates pro- and antiinflammatory cytokines in lipopolysaccharide-activated macrophages // J. Trauma. 2003. Vol. 55, № 3. Р. 540–545.
17. Кабанов Д. С., Прохоренко И. Р. Связь между физико-химическими характеристиками и биологической активностью липополисахаридов // Биологические мембраны. 2011. Т. 28, № 5. С. 323–338.