Anodal Transcranial Direct Current Stimulation Increases Cerebral Blood Flow, Tissue Oxygenation and Improves Neurological Functions in Intact Mice and in the Late Posttraumatic Period of Traumatic Brain Injury
Traumatic brain injury (TBI) is a major health problem that causes long term neurological deficit in the majority of patients and does not have any clinically proved effective treatment. Transcranial direct current stimulation (tDCS) is an emerging electroceutical therapy suggested for TBI rehabilitation. However, optimal parameters of stimulation and mechanisms of action are not determined due to lack of preclinical studies, impeding its clinical implementation. Using the mouse model of TBI, we investigated the effects of anodal tDCS on cerebral blood flow and tissue oxygenation and evaluated the time-dependent efficacy of tDCS in improvement of neurologic outcome. TBI caused damage to cerebral cortex and hippocampus, associated with a progressive decrease in cerebral blood flow and tissue oxygenation in the pericontusional area followed by neurological impairment. In vivo laser speckle imaging showed that anodal tDCS causes an increase in regional blood flow in the cerebral cortex. At the microvascular level, using in vivo two-photon laser scanning microscopy, we have shown that anodal tDCS causes dilatation of arterioles, leading to an increase in capillary blood flow and tissue oxygenation. The four-week course of anodal tDCS significantly improved motor and cognitive neurological functions. The group in which stimulation started 3 weeks after TBI showed a better recovery from injury than the group in which stimulation started 1 week after TBI, indicating that the late post-traumatic period is more optimal for the use of anodal tDCS.
1. Потапов А. А., Лихтерман Л. Б. Черепно-мозговая травма // Клиническая неврология : в 3 т. Основы нейрохирургии / под ред. А. Н. Коновалова. М. : Медицина, 2004. Т. 3 : в 2 ч. Ч. 1.
2. Jain K. K. Neuroprotection in traumatic brain injury // Drug Discovery Today. 2008. Vol. 13. P. 1082–1089.
3. Clayton E., Kinley-Cooper S. K., Weber R. A., Adkins D. L. Brain stimulation : Neuromodulation as a potential treatment for motor recovery following traumatic brain injury // Brain Res. 2016. Vol. 1640. P. 130–138.
4. Nitsche M. A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation // J. Physiol. 2000. Vol. 527, № 3. P. 633–639.
5. Monai H., Ohkura M., Tanaka M., Konno Y., Oe A., Hirai H., Mikoshiba K., Itohara S., Nakai J., Iwai Y., Hirase H. Calcium imaging reveals glial involvement in transcranial direct current stimulationinduced plasticity in mouse brain // Nat. Commun. 2016. Vol. 7. P. 1–10.
6. Wachter D., Wrede A., Schulz-Schaeffer W., TaghizadehWaghefi A., Nitsche M. A., Kutschenko A., Rohde V., Liebetanz D. Transcranial direct current stimulation induces polarity-specifi c changes of cortical blood perfusion in the ra // Exp. Neurol. 2011. Vol. 227, № 2. P. 322–327.
7. Overgaard J., Tweed W. A. Cerebral blood fl ow and its regulation after closed head injury with emphasis on clinical correlations // J. Neurosurg. 1974. Vol. 41. P. 531–541.
8. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies, Guide for the care and use of laboratory animals. 8th ed. Washington : The National Academies Press, 2011. URL: http://oacu.od.nih.gov/regs/guide/ guide.pdf (accessed 28 February 2012).
9. Smith D. H., Soares H. D., Pierce J. S., Perlman K. G., Saatman K. E., Meaney D. F., Dixon C. E., McIntosh T. K. A model of parasagittal controlled cortical impact in the mouse : cognitive and histopathologic effects // J. Neurotrauma. 1995. Vol. 12, № 2. P. 169–178.
10. Chohan M. O., Bragina O. A., Kazim S. F., Statom G. L., Baazaoui N., Bragin D. E., Iqbal K., Nemoto E. M., Yonas H. Enhancement of neurogenesis and memory by a neurotrophic peptide in mild to moderate traumatic brain injury // Neurosurgery. 2015. Vol. 76, № 2. P. 201–214.
11. Semyachkina–Glushkovskaya O. V., Bibikova O. A., Semyachkin-Glushkovksy I. A., Sindeev S. S., Zinchenko E. M., Mohhanad M. K., Braun H. A., Al-Fatle F., Al Hassani L., Tuchin V. V. The assessment of pathological changes in cerebral blood fl ow in hypertensive rats with stress induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations // Photonics & Lasers in Medicine. 2013. Vol. 2, № 2. P. 109–116.
12. Bragin D. E., Kameneva M. V., Bragina O. A., Thomson S., Statom G. L., Lara D. A., Yang Y., Nemoto E. M. Rheological effects of drag-reducing polymers improve cerebral blood fl ow and oxygenation after traumatic brain injury in rats // J. Cereb. Blood Flow Metab. 2017. Vol. 37, № 3. P. 762–775.
13. Kleinfeld D., Mitra P. P., Helmchen F., Denk W. Fluctuations and stimulus-induced changes in blood fl ow observed in individual capillaries in layers 2 through 4 of rat neocortex // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95, № 26. P. 15741–15746.
14. Chance B., Oshino N., Sugano T., Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals // Adv. Exp. Med. Biol. 1973. Vol. 37. P. 277–292.
15. Bragin D. E., Statom G. L., Hagberg S., Nemoto E. M. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fi elds in the healthy rat brain // J. Neurosurg. 2015. Vol. 122, № 5. P. 1239–1247.
16. Schroder M. L., Muizelaar J. P., Bullock M. R., Salvant J. B., Povlishock J. T. Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies // J. Neurosurg. 1995. Vol. 82, № 6. P. 966–971.
17. Pop V., Badaut J. A neurovascular perspective for longterm changes after brain trauma // Transl. Stroke Res. 2011. Vol. 2, № 4. P. 533–545.