Study of the Morphological Features of the Cells of the Bacteria Yersinia pestis, Grown at Different Temperatures by Atomic Force Microscopy
Atomic force microscopy in the study of bacterial cells allows the determination of such morphological parameters as: length, width, cell thickness, its perimeter, cross-sectional area, volume and root mean square roughness of the cell surface, which depends on the degree of laying of peptidoglycan and density of lipopolysaccharide. The aim of this work was to study the changes in the morphological parameters of the cell and the cell surface of bacteria when the temperature conditions of the culture medium change on the Y. pestis model. Along with the traditional morphological parameters the coefficients characterizing the functional state of cells – plasticity, rigidity of the cell wall were determined. The measurements were carried out using standard methods of semi-contact atomic force microscopy and software analysis of AFM images. On the example of Y. pestis it is shown that an increase in the temperature of bacteria cultivation from 28 °C to 37 °C leads to an increase in the volume of the cell, the surface roughness of the cell, and the rigidity of the cell wall. Lowering the cultivation temperature in vitro from 28 °C to 4 °C leads to loss of the rigidity of the cell wall, smoothing of the surface and increasing plasticity. The obtained results extend the information about the mechanisms of adaptation of the plague microbe in different temperature conditions.
1. Vasilchenko A. S. Issledovanie morfo-funkcional’noj reakcii bakterij na razlichnye vozdejstviya s ispol’zovaniem atomno-silovoj mikroskopii: avtoref. dis. … kand. biol. nauk [Study of morpho-functional reaction of bacteria on different effects using atomic force microscopy].Tesis Diss. Cand. Sci. (Biol.). Perm, 2012. 22 p. (in Russian).
2. Erokhin P. S., Utkin D. V., Osina N. A., Boyko A. V., Kuznetsov O. S., Kuklev V. E., Bugorkova T. V. Current state of Investigation of cell wall surface of microorganisms ultrastructure under the action of factors biotic and abiotic nature using methods of atomic force microscopy. Izv. Saratov Univ.( N. S.), Ser. Chemistry. Biology. Ecology, 2016, vol. 16, iss. 2, pp. 186–189 (in Russian).
3. Ignatov S. G. Razrabotka i primenenie sovremennyh me to dov izucheniya i identifi kacii mikroorganizmov s is pol’zovaniem bio-nanotekhnologicheskih podhodov: avto ref. dis. …d-ra biol. nauk [Development and application of modern methods of study and identifi cation of microorganisms using bionanotechnological approaches]. Tesis Diss. Doct. Sci. (Biol.). Obolensk, 2010. 47 p. (in Russian).
4. Korneev D. V Atomno-silovaya spektroskopiya odinochnyh virusnyh chastic i ih sub”edinic: dis. … kand. fi z.-mat. nauk [Atomic force spectroscopy of single viral particles and their subunits]. Diss. Cand. Sci. (Phys.). Kol tsovo, 2016. 109 p. (in Russian).
5. Kraevsky S. V. Atomno-silovaya mikroskopiya affi nnyh vzaimodejstvij v mikrobiologii: avtoref. dis. … kand. biol. nauk [Atomic force microscopy of affi ne interactions in microbiology]. Tesis Diss. Cand. Sci. (Biol.). Obolensk, 2011. 22 p. (in Russian).
6. Nikiyan A. N., Tatibaeva E. B. The use of atomic force microscopy in the identifi cation of specifi cally labeled molecules and microbial cells. Bulletin of the Orenburg State University, 2015, no. 13 (188), pp. 186–189 (in Russian).
7. Onishchenko G. G., Kutyrev V. V., Utkin D. V. Legal and theoretical background the application of nanotechnology and nanomaterials in the diagnosis, Joprevention and treatment of especially dangerous infectious diseases . Journal of Microbiology, Epidemiology and Immunobiology, 2008, no. 6, pp. 93–97 (in Russian).
8. Utkin D. V., Kuznetsov O. S., Erokhin P. S., Spitsyn A. N., Volokh O. A., Osina N. A. Development of methodological approaches to the study of pathogens of particularly dangerous infectious diseases by atomic force microscopy. Problems of particularly dangerous infections, 2012, no. 2 (112), pp. 62–64 (in Russian).
9. Erokhin P. S. Atomno-silovaya mikroskopiya kak instrument opredeleniya chuvstvitel’nosti bakterij k faktoram bioticheskoj i abioticheskoj prirody: dis. kand. … fi z.-mat. nauk [Atomic force microscopy as a tool for determining the sensitivity of bacteria to factors of biotic and abiotic nature]. Dis. Cand. Sci. (Phys.). Saratov, 2015. 126 p. (in Russian).
10. Pleskova S. N., Dubrovin E. V., Golubeva I. S., Gorshkova E. N., Pudovkina E. E. Nanotechnology AFM-morphometry of bacterial cells. Bulletin of Nizhny Novgorod University. N. I. Lobachevsky. Series: Physics of solid state, 2013, no. 2, pp. 34–38. (in Russian).
11. Chao Y., Zhang T. Optimization of fi xation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl. Microbiol. Biotechnol, 2011, vol. 92, no. 2, pp. 381–392.
12. Artamonova M. N., Potaturkina-Nesterova N. I. Study of surface topography of Bacillus subtilis under hypothermia. Fundamental research, 2014, no. 11, pp. 1035–1039 (in Russian).
13. Gushchina Y. Y., Alumina L. N., Goncharova T. A., Veselov A. P., Matskova Y. A., Ejewska M. A. A study of the morphology of the cells of Azotobacterchroococcum in conditions of hyperthermia by atomic force microscopy . Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2005, no. 5, pp. 87–92 (in Russian).
14. Chernyadjev V. A., Byvalov A. A., Ananchenko B. A., Bushmeleva L. G., Lytvynets S. G. Morphological features of bacteria Yersinia pseudotuberculosis under different temperature conditions. News Komi scientifi c center of Ural department of the Russian Academy of Sciences, 2012, vol. 3 (11), pp. 57–60 (in Russian).
15. Wang C., Stanciu C. E., Ehrhardt C. J., Yadavalli V. K. The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis. Anal. Bioanal. Chem., 2016, vol. 408, no. 20, pp. 5585–5591.
16. Sabatini D. D., Bensch K., Barrnett R. J. Cytochemistry and electron microscopy. The preservation of cellular ultra-structure and enzymatic activity by aldehyde fi xation. J. Cell Biol., 1963, vol. 17, pp. 19–58.
17. Pawlowski D. R., Metzger D. J., Raslawsky A., Howlett A., Siebert G., Karalus R. J., Garrett S., Whitehouse C. A. Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm. PLoS ONE, 2011, vol. 6, no. 3, pp. 1–9. DOI: https://doi.org/10.1371/journal.pone.0017585
18. Kadnikova L. A., Kopylov P. H., Dentovskaya S. V., Anisimov A. P. Capsular antigen of Yersinia pestis. Russian Journal of Infection and Immunity, 2015, vol. 5, no. 3, pp. 201–218 (in Russian).
19. Magdanova L. A., Golyasnaya N. V. Heterogeneity as an adaptive property of bacterial populations. Mikrobiologiya [Microbiology], 2013, vol. 82, no. 1, pp. 3–13 (in Russian).