Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 241)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.723:547.3
EDN: 
MAYWZM

Glauconite as a sorbent of 4-nitrophenol

Autors: 
Makhova Tatiana M., Saratov State University
Doronin Sergey Yu., Saratov State University
Abstract: 

The sorption properties of glauconite from Beloozersk deposits (Saratov region) for 4-nitrophenol (4-NF) have been investigated. The effect of glauconite on pH and 4-nitrophenol structure in solution is estimated. It is shown that glauconite increases pH of aqueous environment to 8 and shifts the equilibrium towards the formation of aci-form 4-NF. The conditions of sorption 4-NF by glauconite are established: the sorption time 20 min, the mass of the sorbent (0.50–1.0) g. The isotherm of sorption by 4-NF glauconite has been obtained; its interpretation is given using the Langmuir and Freundlich equations. The main quantitative sorption characteristics of glauconite such as recovery (R = 64%), distribution coefficient (D = 88) and the Langmuir and Freundlich constants for 4-nitrophenol are calculated. These experiments indicate the potential use of the glauconite from Beloozersk deposits (Saratov region) for 4-NP from various waters.

Reference: 
  1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Nitrophenols: 2-Nitrophenol and 4-Nitrophenol. URL: https://www.atsdr.cdc.gov/ToxProfiles/tp50.pdf (дата обращения: 23.06.2020).
  2. Baudu M., Basly J., Kankou M. Copper and nitrophenol pollutants removal by Na montmorillonite/ alginate microcapsules // J. of Hazardous Materials. 2009. Vol. 171. P. 405–409. DOI: https://doi.org/10.1016/j.jhazmat.2009. 06.015
  3. Li X., Hao X., Zhao B. Preparation of modifi ed zeolites by ?-cyclodextrin and its sorption performance of p-nitrophenol // International Conference on Physics, Computing and Mathematical Modeling. 2018. P. 484–488. DOI: https://doi.org/10.12783/dtcse/pcmm2018/23708
  4. Huong P., Lee B., Kim J., Lee C. Nitrophenols removal from aqueous medium using Fe-nano mesoporous zeolite // Materials and Design. 2016. Vol. 101. P. 210–217. DOI: https://doi.org/10.1016/j.matdes.2016.04.020
  5. Huong P., Lee B., Kim J. Improved adsorption properties of a nano zeolite adsorbent toward toxic nitrophenols // Process Safety and Environment Protection. 2016. DOI: https://doi.org/10.1016/j.psep.2016.08.018
  6. Zbair M., Anfar Z., Ahsaine H. Reusable bentonite clay: modelling and optimization of hazardous lead and p-nitrophenol adsorption using a response surface methodology approach // The Royal Society of Chemistry. 2019. Vol. 9. P. 5756–5769. DOI: https://doi.org/10.1016/j.psep.2016.08.018
  7. Azeez S., Adekola F. Kinetics and thermodynamics of sorption of 4-nitrophenol on activated kaolinitic clay and jatropha curcas activated carbon from aqueous solution // Pak. J. Anal. Environ. Chem. 2016. Vol. 17, iss. 1. P. 93–105. DOI: https://doi.org/10.21743/pjaec/2016.06.014
  8. Ozola R., Krauklis A., Burlakovs J., Klavins M., Vincevica-GaileI Z., Hogland W. Surfactant-modifi ed clay sorbents for the removal of p-nitrophenol // Clays and Clay Minerals. 2019. Vol. 67, iss. 2. P.132–142. DOI: https://doi.org/10.1007/s42860-019-00015-2
  9. Houari M., Hamdi B., Bouras O., Bollinger J., Baudu M. Static sorption of phenol and 4-nitrophenol onto composite geomaterials based on montmorillonite, activated carbon and cement // Chemical Engineering J. 2014. Vol. 255. P. 506–512. DOI: https://doi.org/10.1016/j.cej.2014.06.065
  10. Hamidouche S., Bouras O., Zermane F., Cheknane B., Houari M., Debord J., Harel M., Bolinger J., Baudu M. Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactantmodifi ed pillared-clay and activated carbon // Chemical Engineering J. 2015. Vol. 279. P. 964–972. DOI: https://doi.org/10.1016/j.cej.2015.05.012
  11. Santos A., Viante M., Pochapski D., Downs A., Almeida C. Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modifi ed with a cationic surfactant // J. of Hazardous Materials. 2018. Vol. 351. P. 136–144. DOI: https://doi.org/10.1016/j.jhazmat.2018.02.041
  12.  Soldatenko E. M., Doronin S. Yu., Chernova R. K., Makhova T. M. Sorption properties of the antibacterial composite glauconite and copper nanoparticles. Sorption and Chromatography Processes, 2017, vol. 17, no. 3, pp. 443–450 (in Russian). DOI: https://doi.org/10.17308/sorpchrom.2017.17/399
  13. Naumova G. N., Selifonova E. I., Chernovа R. K., Venig S. B., Serzhantov V. G., Zakharevich A. M. About the kinetics and mechanisms of sorption of tetracycline glauconite. Sorption and Chromatography Processes, 2017, vol. 17, no. 1, pp. 141–147 (in Russian).
  14.  Sukhanov P. T., Kushnir A. A., Bondareva L. P., Churilina E. V., Bogdaev A. A., Shatalov G. V. Kinetics of sorption of 4-nitrophenol polymeric sorbents based on N-vinylpyrrolidone. Sorption and Chromatography Processes, 2015, vol. 15, no. 2, pp. 234–242 (in Russian).
Received: 
14.01.2021
Accepted: 
08.02.2021
Published: 
30.06.2021