Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 115)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.28:631.41
EDN: 
JUOQF

Isolation and radiochemical purification of samarium isotopes using ion exchange resins АВ 17?8 AND KU-2

Autors: 
Salmenbayev Sayan E., Institute for Radiation Safety and Ecology of the National Nuclear Center
Nurgaysinova Nazgul K., Institute for Radiation Safety and Ecology of the National Nuclear Center
Yessilkanov Gani M., Institute for Radiation Safety and Ecology of the National Nuclear Center
Temirzhanova Аray E., Institute for Radiation Safety and Ecology of the National Nuclear Center
Makarychev Sergey V., Altai State Agrarian University
Abstract: 

The relevance of the research is caused by the need to develop a methodological base for determining 151Sm content in the soil cover of radioactively contaminated territories of Kazakhstan. The developed method for the determining of 151Sm will make it possible to assess the levels of soil contamination with this radionuclide, to determine the character of its spatial distribution, to allow estimating the internal exposure doses for the personnel and the population. The aim of the research is to carry out the isolation and radiochemical purification of samarium isotopes from acid solutions via using ion-exchange resins AV 17?8 and KU-2. Objects: salt solutions based on nitric and hydrochloric acid containing the stable isotopes of some natural, artificial ?-emitters and isotopes of U and Th. The concentrations of nitric and hydrochloric acids were equal to the concentrations of the same acids used in the routine analysis of Pu and Am. Concentrations of chemical elements were determined using the Agilent 7700x quadrupole mass spectrometer and the iCAP 6300 Duo atomic emission spectrometer. The results of the experiments on the isolation and radiochemical purification of samarium isotopes from acidic solutions using anion-exchange resin AV 17?8 and cation-exchange resin KU-2 have been presented. It has been shown that the Sm-fraction can be purified from alkaline elements, Tl and U isotopes using the KU-2 cation-exchange resin. In turn, the isotopes U, Fe and Co can be removed using an anion exchange resin in 9M HCl media.

 

Reference: 
  1. Parkanyi D., Szentmiklosi L., Vajda N. Radiochemical separation of lanthanides and americium by extraction chromatography using DGA resin. Abstract from International Conference on Radioanalytical and Nuclear Chemistry RANC-2016. Budapest, Hungary, 2016, pp. 110–110. 
  2. Altzitzoglou T., Rozkov A. Standardisation of the 129I, 151Sm and 166mHo activity concentration using the CIEMAT/NIST effi ciency tracing method. Journal of Applied Radiation and Isotopes, 2016, vol. 109, pp. 281–285. https://doi.org/10.1016/j.apradiso.2015.12.048 
  3. Henner P., Hurtevent P., Thiry Y. Soil-to-plant transfer factors of radioactive Ca, Sm and Pd isotopes: Сritical assessment of the use of analogies to derive best-estimates from existing non-specific data. Journal of Environmental Radioactivity, 2014, vol. 136, pp. 152–161
  4. Dewberry R. A., Boyce W. T., Bibler N. E., Ekechukwu A. E., Ferrara D. M. Separation and purifi cation and beta liquid scintillation analysis of 151Sm in Savannah River Site and Hanford Site DOE high level waste. Journal of Radioanalytical and Nuclear Chemistry, 2002, vol. 252, no. 3, pp. 503–513. 
  5. Be M.-M., Isnard H., Cassette P., Mougeot X., Lourenco V., Altzitzoglou T., Pomme S. Determination of the 151Sm half-life. Radiochimica Acta, 2015, vol. 103, no. 9, pp. 619–626. https://doi.org/10.1515/ract-2015-2393 
  6. Dry E. D., Oldham J. W., Bowen M. S. Determination of 151Sm and 147Pm using liquid scintillation tracer methods. Journal of Radioanalytical and Nuclear Chemistry, 2009, vol. 282, pp. 635–640. https://doi.org/10.1007/s10967-009-0330-1 
  7. Miranda M. G., Russell B., Ivanov P. Measurement of 151Sm in nuclear decommissioning samples by ICP-MS/ MS. Journal of Radioanalytical and Nuclear Chemistry, 2018, vol. 316, pp. 831–838. https://doi.org/10.1007/s10967-018-5764-x 
  8. Buchholz B. A., Biegalski S. R., Whitney S. M., Tumey S. J., Weaver C. J. Basis for developing samarium AMS for fuel cycle analysis. Nuclear Instruments and Methods in Physics Research B, 2010, vol. 268, pp. 773–775. https://doi.org/10.1016/j.nimb.2009. 10.027 
  9. Jeskovsky M., Kaizer J., Kontul’ I., Lujaniene G., Mullerova M., Povinec P. P. Analysis of environmental radionuclides. In: M. Annunziata, ed. Handbook of Radioactivity Analysis. 5th ed. New York, Academic Press, 2020, pp. 137–261. https://doi.org/10.1016/B978-0-12-814395-7.00003-9 
  10. Ojovan M. I., Lee W. E., Kalmykov S. N. An Introduction to Nuclear Waste Immobilisation (Third Edition). Elsevier Ltd, 2019. 512 p. https://doi.org/10.1016/B978-0-08-102702-8.00011-X 
  11. Kashirsky V., Shatrov A., Zvereva I., Lukashenko S. Development of a method for studying 241Pu/241Am activity ratio in the soil of the main Semipalatinsk test site areas. Journal of Environmental Radioactivity, 2020, vol. 216, pp. 106181. https://doi.org/10.1016/j. jenvrad.2020.106181 
  12. Izrael’ Yu. A. Radioaktivnye vypadeniya posle yadernykh vzryvov i avarij [Radioactive Fallout After Nuclear Explosions and Accidents]. St. Petersburg, Progress-Pogoda Publ., 1996. 355 p. (in Russian). 
  13. Mikhajlov V. N., Adushkin V. V., Andryushin I. A., Voloshin N. P., Dubasov Yu. V., Il’kaev R. I., Spivak A. A., Chernyshev A. K. Yadernye ispytaniya SSSR: v 6 t. [Nuclear Tests Conducted in the USSR: in 6 vols.]. Sarov, RFYAC – VNIIEF Publ., 1997, vol. 2. 303 p. (in Russian). 
  14. Vajda N., Molnar Z., Bokori E., Osvath S., Parkanyi D., Braun M. Validation of radiochemical methods for the determination of diffi cult-to-measure nuclides using LSC. In: Abstract from International Conference on Advances in Liquid Scintillation Spectrometry. Copenhagen, Denmark, 2017, pp. 50–51.
  15. Martynenko V. P., Nikiforov M. V., Pavlov A. A. Gammaizluchenie produktov mgnovennogo deleniya U235, U238, Pu239 [Gamma Radiation from Instant Fission Products of U235, U238, Pu239]. Leningrad, Gidrometeoizdat Publ., 1971. 247 p. (in Russian). 
  16. Vinogradov A.P. Analiticheskaya khimiya urana [Analytical Chemistry of Uranium]. Moscow, Izdvo Akademii nauk USSR, 1962. 432 p. (in Russian).
  17. Peshkova V. M., Savostina V. M. Analiticheskaya khimiya nikelya [Analytical Chemistry of Nickel]. Moscow, Nauka Publ., 1966. 204 p. (in Russian). 
  18. Polyanskiy N. G. Analiticheskaya khimiya elementov. Svinets [Analytical Chemistry of Elements. Lead]. Moscow, Nauka Publ., 1986. 357 p. (in Russian). 
  19. Pyatnitskiy I. V. Analiticheskaya khimiya kobal’ta [Analytical Chemistry of Cobalt]. Moscow, Nauka Publ., 1965. 261 p. (in Russian).
  20. Ryabchikov D. I., Ryabukhin V. A. Analiticheskaya himiya redkozemel’nyh elementov i ittriya [Analytical Chemistry of Rare Earth Elements and Yttrium]. Moscow, Nauka Publ, 1966. 380 p. (in Russian).
Received: 
21.05.2021
Accepted: 
28.06.2021
Published: 
24.12.2021