Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 247)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
[544.77(051+054.6)+543.421/424]:546.59+504.064.45:677.042.2
EDN: 
VTHQB

Reuse of a purified solution of cetyltrimethylammonium bromide for the synthesis of gold nanorods

Autors: 
Gudova Yuliya D., Saratov State University
Kochubey Vyacheslav I., Saratov State University
Skaptsov Alexander A., Saratov State University
Abstract: 

We investigate the possibility of reusing CTAB solutions for repeated synthesis of gold nanorods. Three tasks have been solved. The first task is to clean the growth solutions from gold nanorods. The second task is to develop a method using a purified cetyltrimethylammonium bromide solution for repeated synthesis of gold nanorods with the same optical properties as in the initial synthesis. The third task is to test the possibility of management of the optical properties of nanorods during repeated synthesis. The polydispersity of nanorods has been estimated by form factor using developed mathematical model.

Reference: 
  1. Dykman L. A., Bogatyrev V. A., Scheglov S. Yu., Khlebtsov N. G. Zolotyye nanochastitsy: sintez, svoystva, biomeditsinskoye primeneniye [Gold Nanoparticles: Synthesis, Properties, Biomedical Applications]. Moscow, Nauka Publ., 2008. 319 p. (in Russian). 
  2. Maier C. M., Huergo M. A., Milosevic S., Pernpeintner C., Li M., Singh D. P., Walker D., Fischer P., Feldmann J., Lohmuller T. Optical and thermophoretic control of janus nanopen injection into living cells. Nano Lett., 2018, vol. 18, iss. 12, pp. 7935–7941. 
  3. Schena E., Saccomandi P., Fong Y. Laser ablation for cancer: past, present and future. J. Funct. Biomater., 2017, vol. 8, iss. 2, pp. 19. 
  4. Sobol’ E. N., Baum O. I., Omel’chenko A. I., Soshnikova Yu. M., Yuzhakov A. V., Kas’yanenko E. M., Tokareva A. V., Baskov A. V., Svistushkin V. M., Selezneva L. V., Shekhter A. B. Laser-induced modifi - cation of structure and shape of cartilage in otolaryngology and orthopaedics. Quantum Electron, 2017, vol. 47, iss. 10, pp. 935–941
  5. Huang X., Jain P. K., El-Sayed I. H., El-Sayed M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, vol. 23, pp. 217–218. 
  6. Nikoobakht B., El-Sayed M. A. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method. Chem. Mater., 2003, vol. 15, pp. 1957–1962. 
  7. Isomaa B., Reuter J., Djupsund B. M. The subacute and chronic toxicity of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in the rat. Arch. Toxicol., 1976, vol. 35, pp. 91–96.
  8. Timmer N., Gore D., Sanders D., Gouin T., Droge S. T. J. Toxicity mitigation and bioaccessibility of the cationic surfactant cetyltrimethylammonium bromide in a sorbentmodifi ed biodegradation study. Chemosphere, 2019, vol. 222, pp. 461–468. 
  9. Khlebtsov B. N., Khanadeev V. A., Ye J., Sukhorukov G. B., Khlebtsov N. G. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir, 2014, vol. 30, iss. 6, pp. 1696–1703. 
  10. Zhang Q. F., Jing H., Li G. G., Lin Y., Blom D. A., Wang H. Intertwining roles of silver ions, surfactants, and reducing agents in gold nanorod overgrowth: pathway switch between silver underpotential deposition and goldsilver codeposition. Chem. Mater., 2016, vol. 28, iss. 8, pp. 2728–2741. 
  11. Zhang Q. F., Han L. L., Jing H., Blom D. A., Lin Y., Xing H. L. L., Wang H. Facet control of gold nanorods. ACS Nano, 2016, vol. 10, iss. 2, pp. 2960–2974. 
  12. Lohse S. E., Burrows N. D., Scarabelli L., LizMarzan L. M., Murphy C. J. Anisotropic noble metal nanocrystal growth: the role of halides. Chem. Mater., 2014, vol. 26, pp. 34?43.
  13. Murphy C. J., Thompson L. B., Chernak D. J., Yang J. A., Sivapalan S. T., Boulos S. P., Huang J., Alkilany A. M., Sisco P. N. Gold nanorod crystal growth: From seedmediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci., 2011, vol. 16, pp. 128–134.
  14. Orendorff C. J., Murphy C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B, 2006, vol. 110, pp. 3990–3994. 
  15. Terentyuk G. S., Ivanov A. V., Polyanskaya N. I., Maksimova I. L., Skaptsov A. A., Chumakov D. S., Khlebtsov B. N., Khlebtsov N. G. Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments. Quantum Electronics, 2012, vol. 42, iss. 5, pp. 380–389. 
  16. Bohren C. F., Huffman D. R. Pogloshcheniye i rasseyaniye sveta malymi chastitsami [Absorption and Scattering of Light by Small Particles]. Moscow, Mir Publ., 1986. 660 p. (in Russian). 
  17. Khlebtsov B., Zharov V., Melnikov A., Tuchin V., Khlebtsov N. Optical amplifi cation of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology, 2006, vol. 17, pp. 5167–5179. 
  18. Johnson P. B., Christy R. W. Optical constants of the noble metals. Phys. Rev. B, 1972, vol. 6, pp. 4370–4379. 
  19. McPeak K. M., Jayanti S. V., Kress S. J. P., Meyer S., Iotti S., Rossinelli A., Norris D. J. Plasmonic fi lms can easily be better: Rules and recipes. ACS Photonics, 2015, vol. 2, pp. 326–333. 
  20. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Melnikov A. G. Spectral properties of colloidal gold and its conjugates with biospecifi c macromolecules. Proc. SPIE, 1996, vol. 2629, pp. 35–45. 
  21. Gudova Y. D., Skaptsov A. A. Color of polydispersion mixtures of gold nanorods. Proc. SPIE, 2020. Vol. 11457, no. 1145713. 
  22. Movchan T. G., Soboleva I. V., Plotnikova E. V., Rusanov A. I., Shchekin A. K. Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid Journal, 2012, vol. 74, iss. 2, pp. 239–247 (in Russian).
Received: 
31.01.2021
Accepted: 
31.01.2021
Published: 
24.12.2021