Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Kovyrshina A. A., Bakal A. A., Saveleva М. S., Goryacheva I. Y., Demina P. A. Dependence of physical-chemical properties of fluorescent hybrid polymer carriers on the conditions of hydrothermal synthesis. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 1, pp. 15-27. DOI: 10.18500/1816-9775-2024-24-1-15-27, EDN: NWNRES

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 91)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544
EDN: 
NWNRES

Dependence of physical-chemical properties of fluorescent hybrid polymer carriers on the conditions of hydrothermal synthesis

Autors: 
Kovyrshina Anastasia A., Saratov State University
Bakal Artem A., Saratov State University
Saveleva Мariia S., Saratov State University
Goryacheva Irina Y., Saratov State University
Demina Polina A., Saratov State University
Abstract: 

Currently, the search for new types of carriers for low-molecular weight substances, as well as the development of optimal methods for the eff ective encapsulation of these substances are important tasks of modern chemistry and pharmacology. However, there are still limitations in this area, among which one of the most signifi cant is the lack of the optimal carrier capable of stably retaining a low-molecular weight substance. The work presents hybrid polymer structures obtained by in situ hydrothermal synthesis as an eff ective candidate for these purposes. The fl uorescent dye rhodamine B has been used as a model low-molecular weight substance for encapsulation into the structures. The resulting hybrid polymer structures demonstrated good stability when stored in an aqueous environment for 336 h with the release of the low-molecular weight dye rhodamine B no more than 2%. In addition, the infl uence of the conditions for obtaining hybrid carriers (including the composition of the carriers (thickness of the polymer shell and the presence of a calcium carbonate core) and synthesis temperature) on their physical-chemical characteristics has been studied. Thus, the optimal approach for obtaining fl uorescent hybrid polymer carriers with a set of desired properties has been revealed. In particular, it has been shown that the optimal production conditions are hydrothermal synthesis temperature of 180 °C and the absence of CaCO3 core inside the polyelectrolyte shell which allow us to obtain a stable hybrid polymer carrier with bright fl uorescence. The results presented in this study can be used to create functional platforms and systems with tunable fl uorescent properties and the ability to deliver low-molecular weight substances.

Reference: 
  1. Mak W. C., Cheung K. Y., Trau D. Infl uence of different polyelectrolytes on layer-by-layer microcapsule properties: Encapsulation effi ciency and colloidal and temperature stability // Chemistry of Materials. 2008. Vol. 20, № 17. P. 5475–5484. https://doi.org/10.1021/cm702254h
  2. Song W., He Q., Möhwald H., Yang Y., Li J. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug // Journal of Controlled Release. 2009. Vol. 139, № 2. P. 160–166. https://doi.org/10.1016/j.jconrel.2009.06.010
  3. Caruso F., Yang W., Trau D., Renneberg R. Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly // Langmuir. 2000. Vol. 16, № 23. P. 8932–8936. https:// doi.org/10.1021/la000401s
  4. Yi Q., Sukhorukov G. B. UV light stimulated encapsulation and release by polyelectrolyte microcapsules // Advances in Colloid and Interface Science. 2013. Vol. 207, № 1. P. 280–289. https://doi.org/10.1016/j.cis.2013.11.009
  5. Li J., Fan J., Cao R., Zhang Z., Du J., Peng X. Encapsulated dye/polymer nanoparticles prepared via miniemulsion polymerization for inkjet printing // ACS Omega. 2018. Vol. 3, № 7. P. 7380–7387. https://doi.org/10.1021/acsomega.8b01151
  6. Asua J. M. Miniemulsion polymerization // Progress in Polymer Science. 2002. Vol. 27, № 7. P. 1283–1346. https://doi.org/10.1016/s0079-6700(02)00010-2
  7. Zhenqian Z., Sihler S., Ziener U. Alizarin Yellow R (AYR) as compatible stabilizer for miniemulsion polymerization // Journal of Colloid and Interface Science. 2017. Vol. 507. P. 337–343. https://doi.org/10.1016/j.jcis.2017.08.007
  8. Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles // Angewandte Chemie International Edition. 2009. Vol. 48, № 25. P. 4488–4507. https://doi.org/10.1002/anie.200900723
  9. Faucheu J., Gauthier C., Chazeau L., Cavaillé J.-Y., Mellon V., Lami E. B. Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: Short review and recent advances // Polymer. 2010. Vol. 51. P. 6–17. https://doi.org/10.1016/j.polymer.2009.11.044
  10. Umezawa M., Ueya Yu., Ichihashi K., Thi Kim Dung D., Soga K. Controlling molecular dye encapsulation in the hydrophobic core of core–shell nanoparticles for in vivo imaging // Biomedical Materials & Devices. 2023. Vol. 1. P. 605–617. https://doi.org/10.1007/s44174- 023-00073-0
  11. Kohl F. F. E., Hinckley J. A., Wiesner U. B. Dye encapsulation in fl uorescent core−shell silica nanoparticles as probed by fl uorescence correlation spectroscopy // The Journal of Physical Chemistry C. 2019. Vol. 123, № 15. P. 9813–9823. https://doi.org/10.1021/acs.jpcc.9b00297
  12. Soga N., Watanabe R., Noji H. Attolitre-sized lipid bilayer chamber array for rapid detection of single transporter // Scientifi c Reports. 2015. Vol. 5. https://doi.org/10.1038/ srep11025
  13. Ga M., Frueh J., Tao T., Petro A. V., Petrov V. V., Shes terikov E. V., Tverdokhlebov S. I., Sukhorukov G. B. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound // Nanoscale. 2017. Vol. 9, № 21. P. 7063–7070. https://doi.org/10.1039/ C7NR01841J
  14. Abdelhamid H. N. Dye encapsulation and one-pot synthesis of microporous–mesoporous zeolitic imidazolate frameworks for CO2 sorption and adenosine triphosphate biosensing // Dalton Trans. 2023. Vol. 52. P. 2506–2517. https://doi.org/10.1039/D2DT04084K
  15. Skirtac A. G., Yashchenok A. M., Möhwald H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules // Chemical Communications. 2011. Vol. 47, № 48. P. 12736–12746. https://doi.org/10.1039/ C1CC13453A
  16. Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation // Langmuir. 2004. Vol. 20, № 8. P. 3398–3406. https://doi.org/10.1021/la036177z
  17. Kim M., Yeo S. J., Highley C. B., Burdick J. A., Yoo P. J., Doh J., Lee D. One-Step generation of multifunctional polyelectrolyte microcapsules via nanoscale interfacial complexation in emulsion (NICE) // ACS Nano. 2015. Vol. 9, № 8. P. 8269–8278. https://doi.org/10.1021/acsnano.5b02702
  18. Kim A. L., Musin E. V., Oripova M. J., Oshchepkova Y. I., Salikhov S. I., Tikhonenko S. A. Polyelectrolyte microcapsules – a promising target delivery system of amiodarone with the possibility of prolonged release // International Journal of Molecular Sciences. 2023. Vol. 24. Article number 3348. https://doi.org/10.3390/ijms24043348
  19. Liqin G., Xin T., Renwang S., Jun X. Layer-by-layer self-assembly of giant polyelectrolyte microcapsules templated by microbubbles as potential hydrophilic or hydrophobic drug delivery system // Colloid and Interface Science Communications. 2022. Vol. 47, № 23. https://doi.org/10.1016/j.colcom.2022.100603
  20. Kalenichenko D., Nifontova G., Karaulov A., Sukhanova A., Nabiev I. D. Designing functionalized polyelectrolyte microcapsules for cancer treatment // Nanomaterials. 2021. Vol. 11. Article number 3055. https://doi. org/10.3390/nano11113055
  21. Son D., Cui J., Ju Y., Faria M., Sun H., Howard C. B., Thurecht K. J., Caruso F. Cellular targeting of bispecifi c antibody-functionalized poly(ethylene glycol) capsules: Do shape and size matter? // ACS Applied Materials & Interfaces. 2019. Vol. 11, № 32. P. 28720–28731. https:// doi.org/10.1021/acsami.9b10304
  22. Simioni A. R., de Jesus P. C. C., Tedesco A. C. Layerby-Layer hollow photosensitizer microcapsule design via a manganese carbonate hard template for photodynamic therapy in cells // Photodiagnosis and Photodynamic Therapy. 2018. Vol. 22. P. 169–177. https://doi. org/10.1016/j.pdpdt.2018.04.011
  23. Володькин Д. В. Иммобилизация белков в микрочастицы, сформированные методом последовательной адсорбции противоположно заряженных полиэлектролитов: дис. … канд. хим. наук. М., 2005. 166 с.
  24. Donath E., Sukhorukov G. B., Caruso F., Davis S. A., Möhwald H. Novel hollow polymer shells by colloidtemplated assembly of polyelectrolytes // Angewandte Chemie International Edition. 1998. Vol. 37, № 16. P. 2201–2205. https://doi.org/10.1002/(SICI)1521- 3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
  25. Köhler K., Shchukin D. G., Möhwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number // The Journal of Physical Chemistry B. 2005. Vol. 109, № 39. P. 18250–18259. https://doi.org/10.1021/jp052208i
  26. Köhler K., Möhwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules. 2. Insight into molecular mechanisms for the PDADMAC/ PSS System // The Journal of Physical Chemistry B. 2006. Vol. 110, № 47. P. 24002–24010. https://doi.org/10.1021/ jp062907a
  27. Musin E. V., Kim A. L., Tikhonenko S. A. Destruction of polyelectrolyte microcapsules formed on CaCO3 microparticles and the release of a protein included by the adsorption method // Polymers. 2020. Vol. 12, № 3. Article number 520. https://doi.org/10.3390/polym12030520
  28. Pechenkin M. A., Möhwald H., Volodkin D. V. pH- and salt-mediated response of layer-by-layer assembled PSS/ PAH microcapsules: Fusion and polymer exchange // Soft Matter. 2012. Vol. 8, № 33. Article number 8659. https:// doi.org/10.1039/c2sm25971k
  29. Gao C., Leporatti S., Moya S., Donath E., Möhwald H. Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength // Chemistry – A European Journal. 2003. Vol. 9, № 4. P. 915–920. https://doi.org/10.1002/chem.200390113
  30. Demina P. A., Sindeeva O. A., Abramova A. M., Prikhozhdenko E. S., Verkhovskii R. A., Lengert E. V., Sapelkin A. V., Goryacheva I. Yu., Sukhorukov G. B. Fluorescent convertible capsule coding systems for individual cell labeling and tracking // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 17. P. 19701–19709. https:// doi.org/10.1021/acsami.1c02767
  31. Demina P. A., Sindeeva O. A., Abramova A. M., Saveleva M. S., Sukhorukov G. B., Goryacheva I. Y. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling // Journal of Biophotonics. 2023. Vol. 16, № 6. https://doi.org/10.1002/jbio.202200379
  32. Sindeeva O. A., Demina P. A., Kozyreva Z. V., Muslimov A. R., Gusliakova O. I., Laushkina V. O., Mordovina E. A., Tsyupka D., Epifanovskaya O. S., Sapach A. Y., Goryacheva I. Yu., Sukhorukov G. B. Labeling and tracking of individual human mesenchymal stromal cells using photoconvertible fl uorescent microcapsules // International Journal of Molecular Sciences. 2023. Vol. 24. Article number 13665. https://doi.org/10.3390/ijms241713665
  33. Программа для анализа и обработки изображений ImageJ. URL: https://imagej.net/ij/index.html (дата обращения: 15.06.23).
  34. Saveleva M. S., Lengert E. V., Verkhovskii R. A., Abalymov A. A., Pavlov A. M., Ermakov A. V., Prikhozhdenko E. S., Shtykov S. N., Svenskaya Yu. I. CaCO3-based carriers with prolonged release properties for antifungal drug delivery to hair follicles // Biomaterials Science. 2022. Vol. 10. P. 3323–3345. https://doi.org/10.1039/ D2BM00539E 3
  35. Tao S., Zhu S., Feng T., Xia C., Song Y., Yang B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review // Materials Today Chemistry. 2017. Vol. 6. P. 13–25. https://doi. org/10.1016/j.mtchem.2017.09.001
  36. Степухович М. С., Абрамова А. М., Бакал А. А., Горячева И. Ю. Новые деградируемые фотокатализаторы для очистки сточных вод // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2023. Т. 23, вып. 2. С. 148–158. https://doi. org/10.18500/1816-9775-2023-23-2-148-158
  37. Antipov A. A., Sukhorukov G. B., Möhwald H. Infl uence of the ionic strength on the polyelectrolyte multilayers’ permeability // Langmuir. 2003. Vol. 19, № 6. P. 2444–2448. https://doi.org/10.1021/la026101n
  38. Tang K., Besseling N. A. M. Formation of polyelectrolyte multilayers: Ionic strengths and growth regimes // Soft Matter. 2016. Vol. 12, № 4. P. 1032–1040. https://doi. org/10.1039/C5SM02118A
  39. Ermakov A. V., Inozemtseva O. A., Gorin D. A., Sukhorukov G. B., Belyakov S., Antipina M. N. Infl uence of heat treatment on loading of polymeric multilayer microcapsules with rhodamine B // Macromolecular Rapid Communications. 2018. Article number 1800200. https://doi. org/10.1002/marc.201800200
  40. Ibarz G., Dähne L., Donath E., Möhwald H. Controlled permeability of polyelectrolyte capsules via defi ned annealing // Chemistry of Materials. 2002. Vol. 14, № 10. P. 4059–4062. https://doi.org/10.1021/cm011300y
  41. Han Y., Bu, J., Zhang Y., Tong W., Gao C. Encapsulation of photosensitizer into multilayer microcapsules by combination of spontaneous deposition and heat-induced shrinkage for photodynamic therapy // Macromolecular Bioscience. 2012. Vol. 12, № 10. P. 1436–1442. https://doi.org/10.1002/mabi.201200191
  42. Sousa de Almeida M., Susnik E., Drasler B., TaladrizBlanco P., Petri-Fink A., Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine // Chemical Society Reviews. 2021. Vol. 50, № 9. P. 5397–5434. https://doi.org/10.1039/ d0cs01127d 
Received: 
15.11.2023
Accepted: 
01.12.2023
Published: 
29.03.2024
Short text (in English):
(downloads: 51)