Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Gribanova Y. А., Potapov A. Ю., Karelina K. O., Slivkin A. I., Shikhaliev K. S., Селеменев В. Ф., Рудаков О. Б. Synthesis of new hybrid molecules based on 7-hydroxy-2,2,4-trimethylhydroquinoline derivatives. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 1, pp. 14-22. DOI: 10.18500/1816-9775-2025-25-1-14-22, EDN: FHXBLA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 228)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.831.3+547.814
EDN: 
FHXBLA

Synthesis of new hybrid molecules based on 7-hydroxy-2,2,4-trimethylhydroquinoline derivatives

Autors: 
Potapov Andrey Юрьевич, Voronezh State University
Karelina Kristina Olegovna, Voronezh State University
Slivkin Aleksei I., Voronezh State University
Shikhaliev Khidmet S., Voronezh State University
Abstract: 

Among the fused azaheterocycles, quinolines have long attracted the attention of chemists. First of all, this is due to their wide range of practically useful properties. Quinolines and their derivatives exhibit a wide range of biological activities, including antimalarial, anticancer, antiviral, antifungal and anti-infl ammatory activities. These compounds are also used as fl uorescent probes, luminescent labels, and in dye production. In the course of this work, a series of pyridocoumarin systems have been obtained, which have been tested as inhibitors of blood clotting factors Xa and XIa. The method for the synthesis of the proposed compounds involves the condensation of 7-hydroxy-2,2,4-trimethyl-1,2- dihydroquinolines and 7-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinolines with malononitrile and aryl(hetaryl)aldehydes. It has been found that as a result of this interaction, new 4H-pyrano[3,2-g]quinoline-3-carbonitriles are formed. In addition, new derivatives of 7-hydroxy-2,2,4- trimethyl-1,2,3,4-tetrahydroquinoline containing an aryl fragment in the 4-position have been obtained, which have been also used as starting compounds for the annelation reaction of the pyran ring. The pyridocoumarin systems obtained in the study have showed promising inhibitory activity against these coagulation factors, making them promising candidates for further study as potential anticoagulant drugs.

Reference: 
  1. Katritzky A. R., Rachwal S., Rachwal B. Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines // Tetrahedron. 1996. Vol. 52. P. 15031–15070. https://doi.org/10.1016/S0040-4020(96)00911-8  
  2. Избранные методы синтеза и модификации гетероциклов / под ред. В. Г. Карцева. Т. 6. Хинолины: химия и биологическая активность. М. : МБФНП (ICSPF) Press, 2007. 744 с. (Серия InterBioScreen).  
  3. Шмырева Ж. В. 2,2,4-Триметилгидрохинолины. Воронеж : Изд-во Воронеж. ун-та, 2000. 124 с.  
  4. Meunier B. Hybrid molecules with a dual mode of action: Dream or reality? // Acc. Chem. Res. 2007. Vol. 41, № 1. P. 69–77. https://doi.org/10.1021/ar7000843  
  5. Miles T. J., Hennessy A. J., Bax B., Brooks G., Brown B. S., Brown P., Cailleau N., Chen D., Dabbs S., Davies D. T., Esken J. M., Giordano I., Hoover J. L., Huang J., Jones G. E., Sukmar S. K., Spitzfaden C., Markwell R. E., Minthorn E. A., Rittenhouse S., Gwynn M. N., Pearson N. D. Novel tricyclics (e.g., GSK945237) as potent inhibitors of bacterial type IIA topoisomerases // Bioorg. Med. Chem. Lett. 2016. Vol. 26, № 10. P. 2464–2469. https://doi.org/10.1016/j.bmcl.2016.03.106  
  6. Schrader K. K., Avolio F., Andolfi A., Cimmino A., Evidente A. Ungeremine and its hemisynthesized analogues as bactericides against Flavobacterium columnare // J. Agric. Food Chem. 2013. Vol. 61, № 6. P. 1179–1183. https://doi.org/10.1021/jf304586j  
  7. Tsuji K., Tsubouchi H., Ishikawa H. Synthesis and antibacterial activities of optically active substituted 1,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acids // Chem. Pharm.Bull. 1995. Vol. 43, № 10. P. 1678–1682. https://doi.org/10.1248/cpb.43.1678  
  8. Ishikawa H., Miyamoto H., Ueda H., Tamaoka H., Tominaga M., Nakadawa K. Studies on antibacterial agents. II. Synthesis and antibacterial activities of substituted 1,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acids // Chem. Pharm. Bull. 1990. Vol. 38, № 9. P. 2459–2462. https://doi.org/10.1248/cpb.38.2459  
  9. Al-Said N. H., Shawakfeh K. Q., Abdullah W. N. Cyclization of free radicals at the C-7 position of ethyl indole–2-carboxylate derivatives: An entry to a new class of duocarmycin analogues // Molecules. 2005. № 10. P. 1446–1457. https://doi.org/10.3390/10121446  
  10. Wong P. C., Quan M. L, Watson C. A., Crain E. J., Harpel M. R., Rendina A. R., Luettgen J. M., Wexler R. R., Schumacher W. A., Seiffert D. A. In vitro, antithrombotic and bleeding time studies of BMS-654457, a small-molecule, reversible and direct inhibitor of factor XIa // J. Thromb. Thrombolysis. 2015. № 40. P. 416–423. https://doi.org/10.1007/s11239-015-1258-7  
  11. Pinto D. J. P., Orwat M. J., Smith L. M., Quan M. L., Lam P. Y. S., Rossi K. A, Apedo A., Bozarth J. M., Wu Y., Zheng J. J., Xin B., Toussaint N., Stetsko P., Gudmundsson O., Maxwell B., Crain E. J., Wong P. C., Lou Z., Harper T. W., Chacko S. A. Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS-962212) // J. Med. Chem. 2017. Vol. 60, № 23. P. 9703–9723. https://doi.org/10.1021/acs.jmedchem.7b01171  
  12. Amin K. M., Gawad N. M. A., Rahman D. E. A., El Ashry M. K. M. New series of 6-substituted coumarin derivatives as effective factor Xa inhibitors: Synthesis, in vivo antithrombotic evaluation and molecular docking // Bioorg. Chem. 2014. Vol. 52. P. 31–43. https://doi.org/10.1016/j.bioorg.2013.11.002  
  13. Santana-Romo F., Lagos C. F., Duarte Y., Castillo F., Moglie Ya., Maestro M. A., Charbe N., Zacconi F. C. Innovative Three-step microwave-promoted synthesis of N-propargyltetrahydroquinoline and 1,2,3-triazole derivatives as a potential factor Xa (FXa) inhibitors: Drug design, synthesis, and biological evaluation // Molecules. 2020. Vol. 25, № 3. 491 p. https://doi.org/10.3390/molecules25030491  
  14. Wissel G., Wissel G., Kudryavtsev P., Ghemtio L., Tammela P., Wipf P., Yliperttula M., Finel M., Urtti A., Kidron H., Xhaard H. Exploring the structure-activity relationships of ABCC2 modulators using a screening approach // Bioorganic & Medicinal Chemistry. 2015. Vol. 23, № 13. P. 3513–3525. https://doi.org/10.1016/j.bmc.2015.04.029  
  15. Потапов А. Ю., Папонов Б. В., Подоплелова Н. А., Пантелеев М. А., Поликарчук В. А., Леденева И. В., Столповская Н. В., Крыльский Д. В., Шихалиев Х. С. Синтез и исследование новых ингибиторов факторов свертывания крови Xa и XIa ряда 2H-пиранохинолин-2-онов // Известия Академии наук. Серия химическая. 2021. Т. 70, № 3. С. 492–497.  
  16. Zhang H., Fang X., Meng Q., Mao Y., Xu Y., Fan T., An J., Huang Z. Design, synthesis and characterization of potent microtubule inhibitors with dual anti-proliferative and anti-angiogenic activities // European Journal of Medicinal Chemistry. 2018. № 157. P. 380–396. https://doi.org/10.1016/j.ejmech.2018.07.043
Received: 
25.07.2024
Accepted: 
14.11.2024
Published: 
31.03.2025
Short text (in English):
(downloads: 80)