Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Revin V. V., Parchaykina M. V., Chudaikina E. V., Revina E. S., Molchanov I. D., Simakova M. A., Zavarykina A. V., Grunyushkin I. P., Devyatkin A. А. Study of the influence of various physiologically active substances on changes in the lipid composition and phospholipase activity of damaged somatic nerves. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 4, pp. 448-460. DOI: 10.18500/1816-9775-2024-24-4-448-460, EDN: QJXELD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 9)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
57:612.01:577.115
EDN: 
QJXELD

Study of the influence of various physiologically active substances on changes in the lipid composition and phospholipase activity of damaged somatic nerves

Autors: 
Revin Viktor V., Ogarev Mordovia State University
Parchaykina Marina V., Ogarev Mordovia State University
Chudaikina Elena V., Ogarev Mordovia State University
Revina Elvira S., Ogarev Mordovia State University
Molchanov Ivan D., Ogarev Mordovia State University
Simakova Milena A., Ogarev Mordovia State University
Zavarykina Anastasia Vyacheslavovna, Ogarev Mordovia State University
Grunyushkin Igor P., Ogarev Mordovia State University
Devyatkin Arkadiy А., Ogarev Mordovia State University
Abstract: 

The changes in lipid composition and phospholipase activity in damaged somatic nerves were studied against the background of the action of potassium hyaluronate and insulin-like growth factor-1. It has been shown that nerve cutting is accompanied by an increase in phospholipase A2 activity, resulting in an accumulation of lysophospholipids and free fatty acids, as well as an increase in phosphatidylinositol levels and a decrease in diacylglycerol content, which is most likely due to inactivation of phosphoinositide-specifi c phospholipase C against the background of injury to the nerve conductor. The introduction of potassium hyaluronate and insulin-like growth factor-1 enhances the recovery processes in the injured nerve conductor, however, the mechanisms of their action remain diff erent. According to the literature data and the results of our own research, the action of potassium hyaluronate and insulin-like growth factor-1 is realized as a result of the launch of signaling pathways associated with the regulation of the activity of enzymes from the phospholipase family. At the same time, our data on a decrease in the activity of phospholipase A2 and the absence of signifi cant changes in the level of phosphatidylinositol and diacylglycerol indicate that potassium hyaluronate most likely exerts its eff ect through the PL A2 -mediated pathway. In addition, it was shown that against the background of the action of IGF-1, an intensifi cation of phosphoinositide metabolism is observed, which is explained by the activation of phosphoinositidespecifi c phospholipase C. According to the literature, the launch of the phospholipase C-mediated mechanism is accompanied by the formation of components of the phosphatidylinositol 3-kinase signaling pathway involved in stimulation of the expression of various transcription factors necessary for axonal regeneration and restoration of the functioning of injured nerve conductors.

Reference: 
  1. Gordon T. Peripheral nerve regeneration and muscle reinnervation // International Journal of Molecular Sciences. 2020. Vol. 21, iss. 22. P. 8652. https://doi.org/10.3390/ijms21228652
  2. Nocera G., Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury // Cellular and Molecular Life Sciences. 2020. Vol. 77. P. 3977–3989. https://doi.org/10.1007/s00018- 020-03516-9
  3. Mahar M., Cavalli V. Intrinsic mechanisms of neuronal axon regeneration // Nature Reviews Neuroscience. 2018. Vol. 19, iss. 6. P. 323–337. https://doi.org/10.1038/s41583-018-0001-8
  4. Xu X., Song L., Li Y., Guo J., Huang S., Du S., Li W., Cao R., Cui S. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway // Journal of Translational Medicine. 2023. Vol. 21, iss. 1. P. 733. https://doi.org/10.1186/s12967-023-04609-2
  5. Xu Y., Liu X., Ahmad M.A., Ao Q., Yu Y., Shao D., Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration // Materials Today Bio. 2024. Vol. 27. P. 101125. https://doi.org/10.1016/j.mtbio.2024.101125 
  6. Altinkaya A., Cebi G., Tanrıverdi G., Alkan F., Cetinkale O. Effects of subepineural hyaluronic acid injection on nerve recovery in a rat sciatic nerve defect model // Turkish Journal of Trauma & Emergency Surgery. 2023. Vol. 29, iss. 3. P. 277. https://doi.org/10.14744/tjtes.2022.45908.
  7. Raghu P., Joseph A., Krishnan H., Singh P., Saha S. Phosphoinositides: Regulators of nervous system function in health and disease // Frontiers in Molecular Neuroscience. 2019. Vol. 12. P. 208. https://doi.org/10.3389/fnmol.2019.00208
  8. González Porto S. A., Domenech N., Blanco F. J., Centeno Cortés A., Rivadulla Fernández C., Álvarez Jorge Á., Sánchez Ibáñez J., Rendal Vázquez E. Intraneural IFG-1 in cryopreserved nerve isografts increase neural regeneration and functional recovery in the rat sciatic nerve // Neurosurgery. 2019. Vol. 85, iss. 3. P. 423–431. https://doi.org/10.1093/neuros/nyy339
  9. Ma K., Xu H., Zhang J., Zhao F., Liang H., Sun H., Li P., Zhang S., Wang R., Chen X. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism // Aging (Albany NY). 2019. Vol. 11, iss. 24. P. 12278. https://doi.org/10.18632/aging.102568
  10. Ревин В. В. Роль липидов в процессе проведения возбуждения по соматическим нервам : дис. … д-ра биол. наук. Минск, 1990. 364 с.
  11. Ревин В. В., Ревина Э. С., Девяткин А. А., Громова Н. В. Роль липидов в функционировании возбудимых биологических мембран. Саранск : Изд-во Морд. ун-та, 2012. 220 с.
  12. Торховская Т. Н., Ипатова О. М., Захарова Т. С., Кочетова М. М., Халилов Э. М. Клеточные рецепторы к лизофосфолипидам как промоторы сигнальных эффектов (обзор) // Биохимия. 2007. Т. 72, № 2. С. 149–158.
  13. Бердичевец И. Н., Тяжелова Т. В., Шимшилашвили Х. Р., Рогаев Е. И. Лизофосфатидная кислота – липидный медиатор с множеством биологических функций. Пути биосинтеза и механизм действия // Биохимия. 2010. Т. 75, № 9. С. 1213–1223. https://doi.org/10.1134/s0006297910090026
  14. Brockerhoff S. E. Phosphoinositides and photoreceptors // Molecular Neurobiology. 2011. Vol. 44. P. 420–425. https://doi.org/10.1007/s12035-011- 8208-y
  15. Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purifi cation // Canadian Journal of Biochemistry and Physiology. 1959. Vol. 37, iss. 8. P. 911–917. https://doi.org/10.1139/o59-099
  16. Scharer C. Diplomarbeit Vergleich von HPLC-ELSD und moderener TLC in der heutigen PhospholipidQualiatskontrolle. Basel : Fachhochschule beider, 2001. 48 p.
  17. Биологические мембраны. Методы / под ред. Дж. Б. Финдлея, У. Г. Эванза. М. : Мир, 1990. 424 с
  18. Handloser D., Widmer V., Reich E. Separation of phospholipids by HPTLC – an investigation of important parameters // Journal of Liquid Chromatography & Related Technologies. 2008. Iss. 31. P. 1857–1870. https://doi.org/10.1080/10826070802188940
  19. Morrison W. R., Smith L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fl uoride–methanol // Journal of Lipid Research. 1964. Vol. 5, iss. 4. P. 600–608. https://doi.org/10.1016/S0022-2275(20)40190-7
  20. Ефремова А. С. Участие кальций-независимой фосфолипазы А2 в регуляции Са2+–сигнала, вызванного ингибитором кальмодулина в тимоцитах крысы // Биологические мембраны. 2008. Т. 25, № 4. С. 292–300.
  21. Mekaj A. Y., Morina A. A., Manxhuka-Kerliu S., Neziri B., Duci S. B., Kukaj V., Miftari I. Electrophysiological and functional evaluation of peroneal nerve regeneration in rabbit following topical hyaluronic acid or tacrolimus application after nerve repair // Nigerian Postgraduate Medical Journal. 2015. Vol. 22, iss. 3. P. 179–184. https://doi.org/10.4103/1117-1936.170738
  22. Yamahara K., Yamamoto N., Kuwata F., Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems // Histology and Histopathology. 2022. Vol. 37, iss. 7. P. 609–619. https://doi.org/10.14670/HH-18-437
  23. Paul J. A., Gregson N. A. An immunohistochemical study of phospholipase A2 in peripheral nerve during Wallerian degeneration // Journal of Neuroimmunology. 1992. Vol. 39, iss. 1-2. P. 31–47. https://doi. org/10.1016/0165-5728(92)90172-h
  24. Uemura T., Takamatsu K., Ikeda M., Okada M., Kazuki K., Ikada Y., Nakamura H. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair // Biochemical and Biophysical Research Communications. 2012. Vol. 419, iss. 1. P. 130–135. https://doi.org/10.1016/j.bbrc.2012.01.154
  25. Edström A., Briggman M., Ekström P. A. R. Phospholipase A2 activity is required for regeneration of sensory axons in cultured adult sciatic nerves // Journal of Neuroscience Research. 1996. Vol. 43, iss. 2. P. 183–189. https://doi.org/10.1002/(SICI)1097- 4547(19960115)43:2<183::AID-JNR6>3.0.CO;2-C
  26. Когтева Г. С., Безуглов В. В. Ненасыщенные жирные кислоты как эндогенные биорегуляторы // Биохимия. 1998. Т. 63, № 1. С. 6–15.
  27. Архипова С. С. Рагинов И. С., Мухитов А. Р., Челышев Ю. А. Клетки-сателлиты чувствительных нейронов при различных типах травм седалищного нерва крысы // Морфология. 2009. Т. 135, № 3. С. 29–34.
  28. Iwanicki J. L., Lu K. W., Taeusch H. W. Reductions of phospholipase A2 inhibition of pulmonary surfactant with hyaluronan // Experimental Lung Research. 2010. Vol. 36, iss. 3. P. 167–174. https://doi. org/10.3109/01902140903234186
  29. Nitzan D. W., Nitzan U., Dan P., Yedgar S. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase A2 // Rheumatology. 2001. Vol. 40, iss. 3. P. 336–340. https://doi.org/10.1093/rheumatology/40.3.336
  30. Кузьменко Т. П., Парчайкина М. В., Ревина Э. С., Гладышева М. Ю., Ревин В. В. Влияние нейротрофических факторов на состав белков при повреждении и регенерации соматических нервов // Биофизика. 2023. Т. 68, № 2. С. 334–348. https://doi. org/10.31857/S0006302923020138
  31. Rajala A., Teel K., Bhat M. A., Batushansky A., Griffi n T. M., Purcell L., Rajala R. V. Insulin-like growth factor 1 receptor mediates photoreceptor neuroprotection // Cell Death & Disease. 2022. Vol. 13, iss. 7. P. 613. https://doi.org/10.1038/s41419- 022-05074-3
  32. de Figueiredo C. S., Raony Í., Medina S.V., de Mello Silva E., Dos Santos A. A., Giestal-de-Araujo E. Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways // Current Research in Neurobiology. 2023. Vol. 4. P. 100068. https://doi.org/10.1016/j.crneur.2022.100068
  33. Kermer P., Klöcker N., Labes M., Bähr M. Insulinlike growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-Kdependent Akt phosphorylation and inhibition of caspase-3 in vivo // Journal of Neuroscience. 2000. Vol. 20, iss. 2. P. 722–728. https://doi.org/10.1523/jneurosci.20-02-00722.2000
Received: 
30.08.2024
Accepted: 
20.09.2024
Published: 
25.12.2024
Short text (in English):
(downloads: 6)