Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Korzhakov A. А., Larina M. V., Pakalnis V. V., Makhov S. V., Bogatyrev V. A., Ivanova E. A., Mashyanova L. V. Study of the influence of co-precipitation process parameters on the physicochemical characteristics of the precursor of the cathode material NCM811. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 4, pp. 375-384. DOI: 10.18500/1816-9775-2025-25-4-375-384, EDN: KGCKKD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 69)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.136+544.643.076.2+620.22
EDN: 
KGCKKD

Study of the influence of co-precipitation process parameters on the physicochemical characteristics of the precursor of the cathode material NCM811

Autors: 
Bogatyrev V. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Abstract: 

Selection of parameters for the synthesis of precursors for NMC cathode materials is one of the prevailing factors that have a signifi cant impact on the chemical composition, bulk density, surface microstructure, electrochemical characteristics and service life of the resulting cathode materials. In this paper, we study the variation of the mixing rate, pH, concentration of the complexing agent, and the molar ratio of NH3 / sulphate solution concentrations. The strict control during co-precipitation has made it possible to obtain a material with obviously preferable physicochemical characteristics.

Reference: 
  1. Chen M., Zheng Z., Wang Q., Zhang Y., Ma X., Shen Ch., Xu D., Liu J., Liu Ya., Gionet P., O'Connor I., Pinnell L., Wang J., Gratz E., Arsenault R., Wang Ya. Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder. Sci. Rep., 2019, vol. 9, no. 1, pp. 1–9. https://doi.org/10.1038/s41598-018-38238-3
  2. Broussely M., Biensan P., Simon B. Lithium insertion into host materials: The key to success for Li ion batteries. Electrochim. Acta, 1999, vol. 45, no. 1, pp. 3–22.
  3. Li B. M., Lu J. Cobalt in lithium-ion batteries. J. Science, 2020, vol. 367, no. 6481, pp. 979–980. https://doi.org/10.1126/science.aba9168
  4. Bensalah N., Dawood H. Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries. J. Mater. Sci. Eng., 2016, vol. 5, no. 4. https://doi.org/10.4172/2169-0022.1000258
  5. Liu H., Wu Y. P., Rahm E., Holze R., Wu H. Q. Cathode materials for lithium ion batteries prepared by sol-gel methods. J. Solid State Electrochem., 2004, vol. 8, no. 7, pp. 450–466.
  6. Ju S. H., Kang Y. C. The characteristics of Ni-Co-Mn-O precursor and Li(Ni1/3Co1/3Mn1/3)O2 cathode powders prepared by spray pyrolysis. Ceram. Int., 2009, vol. 35, no. 3, pp. 1205–1210.
  7. Wang D., Belharouak I., Koenig G. M., Zhou G., Amine K. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. J. Mater. Chem., 2011, vol. 21, no. 25, pp. 9290–9295.
  8. Li H., Xu Q., Shi X. X., Song D. W., Zhang L. Q. Electrochemical performance of LiNi0.5Mn0.5O2 with different synthesis methods. Rare Met., 2015, vol. 34, no. 8, pp. 580–585.
  9. Kong J. Z., Zhou F., Wang C-B., Yang X-Y., Zhai H-F., Li H., Li J-X., Tang Z., Zhang S. Q. Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. J. Alloys Compd., 2013, vol. 554, pp. 221–226.
Received: 
23.05.2025
Accepted: 
08.09.2025
Published: 
25.12.2025
Short text (in English):
(downloads: 25)