Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Pleshakova E. V., Kasatkina M. A., Ngun C. T., Reshetnikov M. V. A study of manganese-oxidizing microorganisms isolated from microbiocenoses of highly magnetic soils. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 4, pp. 409-418. DOI: 10.18500/1816-9775-2022-22-4-409-418, EDN: ORDMDO

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 162)
Полный текст в формате PDF(En):
(downloads: 65)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
579.6:574.24
EDN: 
ORDMDO

A study of manganese-oxidizing microorganisms isolated from microbiocenoses of highly magnetic soils

Autors: 
Pleshakova Ekaterina V., Saratov State University
Kasatkina Milena A., Saratov State University
Ngun Clement T., Saratov State University
Reshetnikov Michae V., Saratov State University
Abstract: 

From the stand point of the possible use of microorganisms in water purifi cation biotechnologies, studying microorganisms capable of removing dangerous pollutants such as heavy metals from the aquatic environment is of great importance. Microbial screening was conducted on isolates from microbiocenoses of highly magnetic soils of the city Mednogorsk (Orenburg region, Russia), to assess their resistance to manganese (II) ions. The objects of this research were nine strains of manganese-oxidizing microorganisms and two strains of iron-oxidizing microorganisms: Bacillus megaterium 69.3 and B. megaterium 69.5. It was observed that, most of the studied microorganisms were characterized by increased resistance to manganese (II) ions when grown on an agar medium. Maximum resistance to Mn (II) was observed in microbial strains: 55.2 and B. megaterium 69.5. The maximum tolerant concentration (MTC) of Mn (II) for these microorganisms was 300 and 350 mmol/L; the minimum inhibitory concentration (MIC) was 350 and 450 mmol/L, respectively. When studying the growth of the two microbial strains: 55.2 and B. megaterium 69.5 in liquid media for 5 days. It was discovered that, when cultured in a selective medium, microbial resistance of the strains to Mn (II) was higher compared to when cultured in a nutrient LB medium. The results showed high resistance of microorganisms to a range of Mn (II) concentrations: from 0,5 to 250 mmol/L in a liquid medium. Maximum growth of the studied microbial strains was observed at Mn (II) concentration of 10 mmol/L. These microbial strains with high resistance to Mn (II) open up the prospect of their practical use for biotechnological purposes involving the purifi cation of drinking and wastewater from high manganese content.

Reference: 

1. Тунакова Ю. А., Галимова А. Р., Шмакова Ю. А. Качество питьевой воды доходящей до потребителя г. Казани при водоподготовке с флокулянтом полиакриламидом // Вестник Казанского технологического университета. 2012. № 19. С. 76–79.
2. Su C., Jiang Q. L., Zhang W. J. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques // Environ. Skeptics and Critics. 2014. Vol. 3, № 2. P. 24–38.
3. Рябова Э. Г. Содержание тяжёлых металлов в городских водоёмах // Теоретическая и прикладная экология. 2019. № 1. С. 36–40. https://doi.org/10.25750/1995-4301- 2019-1-036-040
4. Brown M. T., Foos B. P. Assessing children’s exposures and risks to drinking water contaminants: A manganese case study // Human and Ecological Risk Assessment. 2009. Vol. 15, № 5. P. 923–947. https://doi.org/10.1080/10807030903153030
5. Redwan M., Elhaddad E. Assessment the seasonal variability and enrichment of toxic trace metals pollution in sediments of Damietta branch, Nile river, Egypt // Water. 2020. Vol. 12. P. 3359. https://doi.org/10.3390/w12123359
6. Stepanova N. V., Valeeva E. R., Ziyatdinova A. I., Fomina S. F. Peculiarities of chidren’s risk assessment on ingestion of chemicals with drinking water // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. Vol. 7, № 3. P. 1677.

7. Мазунина Д. Л. Негативные эффекты марганца при хроническом поступлении в организм с питьевой водой // Экология человека. 2015. № 3. С. 25–31.
8. Кузнецов А. Е., Градова Н. Б., Лушников С. В. Прикладная экобиотехнология : учебное пособие : в 2 т. Т. 1. М. : БИНОМ. Лаборатория знаний, 2010. 629 с.
9. Шаяхметова С. Г., Назаров В. Д., Шаяхметов Р. З., Яковлев В. В. Рольжелезобактерий при очистке водыот марганца Патраковского водозабора Краснокамского района РБ // Башкирский химический журнал. 2007. Т. 14, № 2. С. 126–130.
10. Домрачева Л. И., Скугорева С. Г., Ашихмина Т. Я., Огородникова С. Ю., Кондакова Л. В., Великоредчанина Е. О., Короткова А. В., Ковина А. Л. Использование отработанного активного ила для очистки сточных вод, загрязнённых тяжёлыми металлами // Теоретическая и прикладная экология. 2020. № 4. С. 176–184. https://doi.org/10.25750/1995-4301-2020-4-176-184
11. Dixit R., Wasiullah, Malaviya D., Pandiyan K., Singh U. B., Sahu A., Shukla R., Singh B. P., Rai J. P., Sharma P. K., Lade H., Paul D. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes // Sustainability. 2015. Vol. 7. P. 2189–2212. https://doi.org/10.3390/su7022189
12. Mosa K. A., Saadoun I., Kumar K., Dhankher O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids // Front. Plant Sci. 2016. Vol. 7. P. 1–14. https://doi.org/10.3389/fpls.2016.00303
13. Wang J. L., Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review // Biotechnol. Adv. 2006. Vol. 24. P. 427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001

14. Cahyani V. R., Murase J., Ishibashi E., Asakawa S., Kimura M. Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice fi eld subsoils // Biol. Fertil. Soils. 2008. Vol. 45. P. 337–346. https://doi.org/10.1007/s00374-008-0337-8
15. De Schamphelaire L., Rabaey K., Boon N., Verstraete W., Boeckx P. Minireview: The potential of exchanged manganese redox cycling for sediment oxidation // Geomicrob. J. 2007. Vol. 24, № 7-8. P. 547–558. https://doi.org/10.1080/01490450701670137
16. Falamin A. A., Pinevich A. V. Isolation and characterization of a unicellular manganese-oxidizing bacterium from a freshwater lake in Northwestern Russia // Microbiology. 2006. Vol. 75. P. 180–185. https://doi.org/10.1134/S0026261706020111
17. Sujith P. P., Loka Bharathi P. A. Manganese oxidation by bacteria: Biogeochemical aspects // Molecular biomineralization. Progress in molecular and subcellular biology. Vol. 52 / ed. W. Müller. Berlin : Springer-Verlag, Heidelberg, Germany, 2011. P. 49–76.
18. Virpiranta H., Banasik M., Taskila S., Leiviskä T., Halttu M., Sotaniemi V., Tanskanen J. Isolation of effi cient metal-binding bacteria from boreal peat soils and development of microbial biosorbents for improved nickel scavenging // Water. 2020. Vol. 12. P. 2000. https://doi.org/10.3390/w12072000
19. Brouwers G. J., Vijgenboom E., Corstjens P., De Vrind J. P. M., De Vrind- Jong E. W. Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and
functions // Geomicrob. J. 2000. Vol. 17. P. 1–24. https://doi.org/10.1080/014904500270459
20. Tebo B. M., Geszvain K., Lee S.-W. Chapter 13. The molecular geomicrobiology of bacterial manganese (II) oxidation // Geomicrobiology : Molecular and Environmental Perspective / eds. L. L. Burton, M. Mandl, A. Loy. New York : Springer, 2010. P. 285–308.
21. Шубаков А. А., Михайлова Е. А., Оводов Ю. С. Использование микроорганизмов для извлечения марганца из водных сред // Известия Коми научного центра УрО РАН. 2014. Вып. 1 (17). С. 16–18.
22. Плешакова Е. В., Решетников М. В., Нгун К. Т., Шувалова Е. П. Микробиологическая и биохимическая индикация почв города Медногорска // Агрохимия. 2016. № 1. С. 66 73.
23. Pleshakova E. V., Ngun C. T., Reshetnikov M. V., Larionov M. V. Evaluation of the ecological potential of microorganisms for purifying water with high iron content // Water. 2021. Vol. 13. P. 901. https://doi.org/10.3390/w13070901
24. Захарова Ю. Р., Парфенова В. В. Метод культивирования микроорганизмов, окисляющихжелезо и марганец в донных осадках оз. Байкал // Изв. РАН. Сер. Биол. 2007. № 3. С. 290–295.
25. Granina L. Z., Parfenova V. V., Zemskaya T. I., Zakharova Yu. R., Golobokova L. P. On iron and manganeseoxidizing microorganisms in sedimentary redox cycling in lake Baikal // Berliner Palaobiol. Abhandlungen. 2003. Vol. 4. P. 121–128.
26. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. New York : Cold Spring Harbor Lab. Press, 1989. 1659 p.

27. Теппер Е. З., Шильникова В. К., Переверзева Г. И. Практикум по микробиологии. М. : Дрофа, 2004. 256 с.
28. Malik A., Ahmad M. Seasonal variation in bacterial fl ora of the wastewater and soil in the vicinity of industrial area // Environ. Monitor. Assess. 2002. Vol. 73. P. 263–273. https://doi.org/10.1023/A:1013186218093
29. Summers A. O., Silver S. Mercury resistance in a plasmidbearing strain of Escherichia coli // J. Bacteriol. 1972. Vol. 112. P. 1228–1236. https://doi.org/10.1128/ JB.112.3.1228-1236.1972
30. Безвербная И. П., Бузолева Л. С., Христофорова Н. А. Металоустойчивые гетеротрофные бактерии в прибрежных акваториях Приморья // Биология моря. 2005. Т. 31, № 2. С. 89–93.
31. Choudhary S., Sar P. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration // Bioresour. Technol. 2009. Vol. 100, № 9. P. 2482–2492. https://doi.org/10.1016/j.biortech.2008.12.015
32. Tayang A., Songachan L. S. Microbial bioremediation of heavy metals // Current Science. 2021. Vol. 120, № 6. P. 1013–1025. https://doi.org/10.18520/cs/v120/i6/1013-1025

Received: 
14.03.2022
Accepted: 
30.03.2022
Published: 
23.12.2022
Short text (in English):
(downloads: 37)