For citation:
Karagulova M. A., Kirilina D. R., Danilina V. V., Tsesarenkova V. M., Cherkasov D. G. Polythermal study of phase behavior and extractive crystallization of salt in the ternary system ammonium sulfate – water – polyethylene glycol-1500. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 2, pp. 171-183. DOI: 10.18500/1816-9775-2025-25-2-171-183, EDN: KIWLXE
Polythermal study of phase behavior and extractive crystallization of salt in the ternary system ammonium sulfate – water – polyethylene glycol-1500
Phase equilibria and solubility have been studied by the visual polythermal method in mixtures of components in nine sections of the composition triangle in the range of 10–70° C in the ternary system ammonium sulfate – water – polyethyleneglycol-1500 (PEG-1500). The dependence of the compositions of solutions corresponding to the critical solubility points of the stratifi cation region on temperature has been found using the liquid phase volume ratio method. Isothermal phase diagrams of the studied ternary system have been constructed at 10.0, 20.0, 40.0, 50.0 and 70.0°C, the solubility of the components has been determined. It has been found that in the range of 10.0–40.0° C, a triangle of the eutectic state exists on the isothermal diagrams. At all temperatures of the study range, a monotectic triangle with adjacent fi elds of saturated solutions and stratifi cation is realized on the isotherms. The coeffi cients of PEG-1500 distribution between the equilibrium liquid phases of the monotectic state have been calculated. It has been found that ammonium sulfate eff ectively salts out PEG-1500 in the range of 10.0–70.0° C, while the content of the organic component in the aqueous phase is minimal (0.1–0.2 wt.%). Mixtures of the components of the studied system can be recommended for the extraction of hydrophilic molecules without introducing other compounds. It has been found that PEG-1500 exhibits high effi ciency as an ammonium sulfate antisolvent, which allows this salt to be extracted with high yields from unsaturated aqueous solutions at temperatures close to the standard one. With a decrease in temperature and an increase in the content of PEG-1500 in the water-salt mixture, the yield of salt crystals increases. It has been found that for a 38 wt.% ammonium sulfate solution with the introduction of 60 wt.% PEG-1500, the maximum yield of salt crystals (96.4%) has been observed at 30.0° C.
- Nouri E., Khayati G. A. Review of background and application of ATPSs in protein and enzyme extraction // J. Solution Chem. 2024. Vol. 53, № 10. P. 1–35. https://doi.org/10.1007/s10953-024-01380-w
- Chen Y., Liu X., Lu Y., Zhang X. Investigation of gallium partitioning behavior in aqueous two-phase systems containing polyethylene glycol and ammonium sulfate // J. Chem. Eng. Data. 2009. Vol. 54, № 7. P. 2002–2004. https://doi.org/10.1021/je8008446
- Bulgariu L., Bulgariu D., Sârghie I., Măluṭan T. Cd (II) extraction in PEG-based two-phase aqueous systems in the presence of iodide ions. Analysis of PEG-rich solid phases // Open Chem. 2007. Vol. 5, № 1. P. 291–302. https://doi.org/10.2478/s11532-006-0048-7
- Gao Y. L., Peng Q. H., Li Z. C., Li Y. G. Thermodynamics of ammonium sulfate–polyethylene glycol aqueous two-phase systems. Part1. Experiment and correlation using extended uniquac equation // Fluid Phase Equilib. 1991. Vol. 63, № 1-2. P. 157–171. https://doi.org/10.1016/0378-3812(91)80028-T
- Lemos L. R., Rocha Patrício P., Rodrigues G. D., Carvalho R. M. M., Silva M. C. H., Silva, L. H. M. Liquid-liquid equilibrium of aqueous two-phase systems composed of poly (ethylene oxide) 1500 and different electrolytes ((NH4)2SO4, ZnSO4 and K2HPO4): Experimental and correlation // Fluid Phase Equilib. 2011. Vol. 305, № 1. P. 19–24. https://doi.org/10.1016/j.fluid.2011.03.001
- Bulgariu L., Bulgariu D. Extraction of gold (III) from chloride media in aqueous polyethylene glycol-based two-phase system // Sep. Purif. Technol. 2011. Vol. 80, № 3. P. 620–625. https://doi.org/10.1016/j.seppur.2011.06.018
- Mokhodoeva O., Rudik I., Shkinev V., Maryutina T. Countercurrent chromatography approach to palladium and platinum separation using aqueous biphasic system // J. Chromatogr. A. 2021. Vol. 1657. P. 578–581. https://doi.org/10.1016/j.chroma.2021.462581
- Levina A. V., Fedorova M. I., Zakhodyaeva Y. A., Voshkin A. A. On the interphase distribution of nickel (II) and vanadium (IV) ions in a system based on PEG-1500 // Theor. Found. Chem. Eng. 2023. Vol. 57, № 4. P. 720–724. https://doi.org/10.1134/S0040579523040206
- Rosa M. E., Mendes M. S., Belchior D. C., Coutinho J. A., Silva F. A., Freire M. G. Enhancing biomarker detection in human serum for lung cancer diagnosis: Aqueous biphasic systems for simultaneous depletion of high-abundance proteins and efficient extraction of CYFRA 21-1 // Adv. Sample Prep. 2024. Vol. 10. Art. 100116. https://doi.org/10.1016/j.sampre.2024.100116
- Nascimento S. S., Santos V. S. V., Watanabe E. O., Souza Ferreira J. Assessment of the purification of phycobiliproteins in cyanobacteria through aqueous two-phase systems with different proportions of PEG/salt // FBP. 2020. Vol. 119. P. 345–349. https://doi.org/10.1016/j.fbp.2019.11.020
- González-Amado M., Tavares A. P., Freire M. G., Soto A., Rodríguez O. Recovery of lactose and proteins from cheese whey with poly (ethylene) glycol/sulfate aqueous two-phase systems // Sep. Purif. Technol. 2021. Vol. 255. Art. 117686. https://doi.org/10.1016/j.seppur.2020.117686
- Liu Y., Zhu H., Li S., Ren X., Xu Q., Wang S., Wu X. Solubility of naphthalene in the top phase of polyethylene glycol and ammonium sulfate aqueous two-phase systems // J. Chem. Eng. Data. 2023. Vol. 68, № 8. P. 2045–2054. https://doi.org/10.1021/acs.jced.3c00215
- Martins J. P., Carvalho C. P., Silva L. H. M., Coimbra J. S. R., Silva M. C. H., Rodrigues G. D., Minim L. A. Liquid-liquid equilibria of an aqueous two-phase system containing poly(ethylene) glycol 1500 and sulfate salts at different temperatures // J. Chem. Eng. Data. 2008. Vol. 53, № 1. P. 238–241. https://doi.org/10.1021/je700538z
- Nemati-Kande E., Azizi Z., Mokarizadeh M. Phase diagrams of PEG 1000, 1500, 2000, 4000, 6000 + lithium citrate + water ATPSs, and the partitioning of salbutamol at T= 298.15 K // Sci. Rep. 2023. Vol. 13, № 1. Art. 1045. https://doi.org/10.1038/s41598-023-28046-9
- Zakhodyaeva Y. A., Rudakov D. G., Solov'ev V. O., Voshkin A. A., Timoshenko A. V. Liquid-liquid equilibrium of aqueous two-phase system composed of poly (ethylene oxide) 1500 and sodium nitrate // J. Chem. Eng. Data. 2019. Vol. 64, № 3. P. 1250–1255. https://doi.org/10.1021/acs.jced.8b01138
- Fedorova M. I., Zakhodyaeva Y. A., Zinov'eva I. V., Voshkin A. A. Recovery of rare-earth elements from nitrate solutions using polyethylene glycol 1500 // Russ. Chem. Bull. 2020. Vol. 69, № 7. P. 1344–1348. https://doi.org/10.1007/s11172-020-2908-2
- Zakhodyaeva Y. A., Zinov'eva I. V., Tokar E. S., Voshkin A. A. Complex extraction of metals in an aqueous two-phase system based on poly (ethylene oxide) 1500 and sodium nitrate // Molecules. 2019. Vol. 24, № 22. P. 1201–1207. https://doi.org/10.3390/molecules24224078
- Fedorova M. I., Levina A. V., Zakhodyaeva Y. A., Voshkin A. A. Interphase distribution of V(IV) in the polyethylene glycol 1500–sodium nitrate–water system // Theor. Found. Chem. Eng. 2020. Vol. 54, № 4. P. 604–609. https://doi.org/10.1134/S0040579520040211
- Hammer S., Pfennig A., Stumpf M. Liquid-liquid and vapor-liquid equilibria in water + poly (ethylene glycol) + sodium sulfate // J. Chem. Eng. Data. 1994. Vol. 39, № 3. P. 409–413. https://doi.org/10.1021/je00015a002
- Pirdashti M., Bozorgzadeh A., Ketabi M., Khoiroh I. Phase equilibria of aqueous mixtures of PEG with formate salt: Effects of pH, type of cation, polymer molecular weight and temperature // Fluid Phase Equilib. 2019. Vol. 485. P. 158–167. https://doi.org/10.1016/j.fluid.2018.12.021
- Shahrokhi B., Pirdashti M., Mobalegholeslam P., Rostami A. A. Liquid-liquid equilibrium and physical properties of aqueous mixtures of poly (ethylene glycol) with zinc sulfate at different pH values: Experiment, correlation, and thermodynamic modeling // J. Chem. Eng. Data. 2017. Vol. 62, № 3. P. 1106–1118. https://doi.org/10.1021/acs.jced.6b00950
- Carvalho C. P., Coimbra J. S. R., Costa I. A. F., Minim L. A., Maffia M. C., Silva L. H. M. Influence of the temperature and type of salt on the phase equilibrium of PEG 1500 + potassium phosphate and PEG 1500 + sodium citrate aqueous two-phase systems // Quim. Nova. 2008. Vol. 31, № 2. P. 209–213. https://doi.org/10.1590/S0100-40422008000200004
- Oliveira R. M., Coimbra J. S. R., Minim L. A., Silva L. H. M., Ferreira Fontes M. P. Liquid-liquid equilibria of biphasic systems composed of sodium citrate + polyethylene (glycol) 1500 or 4000 at different temperatures // J. Chem. Eng. Data. 2008. Vol. 53, № 4. P. 895–899. https://doi.org/10.1021/je7004209
- Киргинцев А. Н., Трушникова Л. Н., Лаврентьева В. Г. Растворимость неорганических веществ в воде : справочник. Л. : Химия, 1972. 248 c.
- Справочник по растворимости. Бинарные системы / под ред. В. В. Кафарова. М. ; Л. : Изд-во АН СССР, 1963. Т. 1, кн. 1, 2. 1960 с.
- Зубарев К. Е., Климова Я. С., Суворова Н. И., Черкасов Д. Г. Диаграмма растворимости двойной системы вода – ПЭГ-1500 в интервале −20–50°C // XII Международное Курнаковское совещание по физико-химическому анализу : сб. статей (Санкт-Петербург, 27–29 сентября 2022 г.). СПб. : С.-Петербургский политехнический университет Петра Великого, 2022. С.116–117. EDN: BILWII
- Аносов В. Я., Озерова М. И., Фиалков Ю. Я. Основы физико-химического анализа. М. : Наука, 1976. 503 c.
- Ильин К. К., Черкасов Д. Г. Топология фазовых диаграмм тройных систем соль – два растворителя с всаливанием – высаливанием. Саратов : Изд-во Сарат. ун-та, 2020. 212 с.
- Трейбал Р. Жидкостная экстракция. М. : Химия, 1966. 724 с.
- Danilina V. V., Klimova Ya. S., Il'in K. K., Smotrov M. P., Cherkasov D. G. Physicochemical rationale for the method of extractive crystallization of salts based on the analysis of the phase diagrams of salt–water–amine ternary systems // Russ. J. Phys. Chem. A. 2024. Vol. 98, № 14. P. 3271–3282. https://doi.org/10.1134/S0036024424702789