Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Semyachkina-Glushkovskaya O. V., Sarantseva E. I., Iskra T. D. Photostimulation as a therapy method for spinal cord contusion while asleep and awake. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 4, pp. 439-447. DOI: 10.18500/1816-9775-2024-24-4-439-447, EDN: OGFMTF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 10)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
57.089.62:612.83:616-001.32
EDN: 
OGFMTF

Photostimulation as a therapy method for spinal cord contusion while asleep and awake

Autors: 
Semyachkina-Glushkovskaya Oksana V., Saratov State University
Sarantseva Elena I., Saratov State University
Iskra Tatiana D., Saratov State University
Abstract: 

Traumatic spinal cord injury is one of the most complex problems in modern medicine, characterized by a signifi cant number of severe consequences and complications, development of traumatic spinal cord disease with a complex of structural and functional disorders leading to limited self-care and mobility, persistent endocrine shifts and changes in internal organs and systems, loss of control of pelvic functions, high mortality rates, and an extremely high level of social and psychological maladaptation of patients. Taking into account the fact that lymphatic drainage processes in the brain are activated during sleep, attention was given to comparing the eff ects of phototherapy of injured spinal cord in mice receiving treatment while asleep or awake. Photobiomodulation therapy was used as an anti-infl ammatory and non-invasive treatment with minimal side eff ects. In the course of the study we established the presence of lymphatic structures in the animals’ spinal cord tissues. In a number of phototherapeutic eff ects during sleep we observed the following: improvement of morphological parameters of spinal cord tissues and activation of lymphatic drainage processes in the spinal cord.

Reference: 
  1. Morozov I. N., Mlyavykh S. G. Epidemiology of spine and spinal cord injury (review) // Medical Almanac. 2011. Vol. 17, № 4. P. 157–166.
  2. Копаев С. Ю. Эндоокулярное биостимулирующее воздействие низкоинтенсивного излучения гелий-неонового лазера 0,63 мкм на клетки заднего эпителия роговицы в процессе экстракции катаракты // Практическая медицина. 2018. Т. 16, № 9. С. 126–129. https://doi.org/10.32000/2072-1757-2018-9-126-129
  3. Barbiellini A. C., Salmaso L., Bellio S., Saia M. Epidemiology of traumatic spinal cord injury: A large population-based study // Spinal Cord. 2022. Vol. 60. P. 812–819. https://doi.org/10.1038/s41393-022- 00759-w
  4. Paudel K. P., Panta S., Thapa S. K., Thapa S. Traumatic Spinal Injury among Patients with Spinal Injuries Admitted to the Spine Unit of a Tertiary Care Centre: A Descriptive Cross-sectional Study // JNMA J. Nepal Med. Assoc. 2022. Vol. 60. P. 335–339. https://doi.org/10.31729/jnma.6850
  5. Antila S., Karaman S., Nurmi H., Airavaara M., VoutilainenM. H., Mathivet T., Chilov D., Li Z., Koppinen T., Park J.-H., Fang S., Aspelund A., Saarma M., Eichmann A., Thomas J.-L., Alitalo K. Development and plasticity of meningeal lymphatic vessels // J. Exp. Med. 2017. Vol. 214. P. 3645–3667. https://doi.org/10.1084/jem.20170391
  6. Miura M., Kato S., von Ludinghausen M. Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics // Arch. Histol. Cytol. 1998. Vol. 61. P. 277–286. https://doi.org/10.1679/aohc.61.277
  7. Gilchrist E. The relation of the peripheral lymphatic system to the spinal cord // Edinb. Med. J. 1934. Vol. 41. P. 359–362. PMCID: PMC5314268
  8. Semyachkina-Glushkovskaya O., Penzel T., Blokhina I., Khorovodov A., Fedosov I., Yu T., Karandin G., Evsukova A., Elovenko D., Adushkina V., Shirokov A., Dubrovskii A., Terskov A., Navolokin N., Tzoy M., Ageev V., Agranovich I., Telnova V., Tsven A., Kurths J. Night photostimulation of clearance of beta-amyloid from mouse brain: New strategies in preventing Alzheimer’s disease // Cells. 2021. Vol. 10. P. 3289. https://doi.org/10.3390/cells10123289
  9. Semyachkina-Glushkovskaya O., Shirokov A., Blokhina I., Fedosov I., Terskov A., Dubrovskii A., Tzoy M., Elovenko D., Adushkina V., Evsukova A., Telnova V., Telnova V., Tsven A., Krupnova V., Manzhaeva M., Dmitrenko A., Penzel T., Kurths J. Mechanisms of phototherapy of Alzheimer’s disease during sleep and wakefulness: The role of the meningeal lymphatics // Front Optoelectron. 2023. Vol. 16. P. 22. https://doi. org/10.1007/s12200-023-00080-5
  10. Xie L., Kand H., Xu Q. Sleep drives metabolite clearance from the adult brain // Science. 2013. Vol. 342. P. 373–377. https://doi.org/10.1126/science.1241224
  11. Fultz N. E., Bonmassar G., Setsompop K. Coupled electrophysiological, hemodynamic, and cerebrospinal fl uid oscillations in human sleep // Science. 2019. Vol. 366. P. 628–631. https://doi.org/10.1126/science.aax5440 
  12. Semyachkina-Glushkovskaya O., Fedosov I., Navolokin N. A., Shirokov A., Maslyakova G. N., Bucharskaya A., Terskov A., Postnov D., Blokhina I., Khorovodov A., Kurths J. Pilot identification of the Live-l/Prox-1 expressing lymphatic vessels and lym phatic elements in the unaffected and affected human brain // BioRxiv. 2021. https://doi.org/10.1101/2021.09.05.458990
Received: 
09.09.2024
Accepted: 
15.09.2024
Published: 
25.12.2024
Short text (in English):
(downloads: 8)