Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Ivantsova N. A., Kuzin E. N., Churina A. A. Photocatalytic water purification from phenol and formaldehyde. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 3, pp. 275-281. DOI: 10.18500/1816-9775-2022-22-3-275-281

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 455)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.433:542.943-92:628.316.12

Photocatalytic water purification from phenol and formaldehyde

Autors: 
Ivantsova Natalya A., Mendeleev University of Chemical Technology of Russia
Kuzin Evgeniy N., Mendeleev University of Chemical Technology of Russia
Churina Alina A., Mendeleev University of Chemical Technology of Russia
Abstract: 

Industrial development leads to an increasing number of persistent and highly toxic organic compounds such as phenol and formaldehyde. Chemical oxidation processes (in particular, photooxidation) are widely used for water treatment and wastewater and groundwater treatment. As part of the work done, an assessment of the possibility of using photocatalysis for post-treatment of wastewater from phenol, formaldehyde, and their mixtures has been carried out. The processes of photooxidation of formaldehyde, phenol and their mixtures in an aqueous medium under the individual and combined eff ects of ultraviolet radiation and titanyl sulfate have been studied. The high effi ciency (up to 90%) of photocatalytic post-treatment of wastewater containing phenol and formaldehyde has been determined. It has been established that ultraviolet water treatment under static conditions can signifi cantly reduce the concentrations of phenol and formaldehyde to the values of the discharge standard into the city water canal. It has been proven that the introduction of titanyl sulfate microadditives (homogeneous photocatalytic process) makes it possible to intensify the oxidation process, while the addition of titanium(IV) compounds, due to its chemical inertness, will not have a toxic eff ect on the activated sludge biocenosis. Possible intermediate products of photooxidative degradation of phenol and formaldehyde are qualitatively determined. The kinetic dependences of the oxidation of phenol, formaldehyde and their mixtures are obtained, which allow further scaling up the process of photodegradation with the introduction of homogeneous catalysts for industrial facilities into the system. The proposed post-treatment method is included in the Best Available Techniques directory and will improve environmental and industrial safety.

Reference: 
  1. Герасимов С. П., Титов А. Ю., Палачев В. А., Коновалов А. Н. Технология получения художественных отливок в формы из холоднотвердеющих смесей с облицовочным керамическим слоем // Цветные металлы. 2015. № 10. С. 8–12. https://doi.org/10.17580/ tsm.2015.10.01
  2. Илларионов И. Е. Научные основы разработки стержневых и формовочных смесей на основе неорганических фосфатных связующих и порошкообразных отвердителей // Литейщик России. 2016. № 1. С. 16–27.
  3. Евлампиев А. А., Чернышев Е. А., Григорьев Л. П. Опыт освоения Alfa-set-процесса // Литейное производство. 2011. № 5. С. 17–18.
  4. Багазеев В. К., Валиев Н. Г., Симисинов Д. И. Физикомеханическое обоснование гидравлического разрушения пород при скважинно-гидравлической разработке россыпных месторождений // Горный журнал. 2015. № 12. С. 25–27. https://doi.org/10.17580/ gzh.2015.12.05
  5. Дряхлов В. А., Алмазова Г. А., Шайхиев И. Г. Очистка ливневых сточных вод от фенола и формальдегида // Вестник Казанского технологического университета. 2014. Т. 17, № 6. С. 186–188.
  6. Венцкель А. В., Кибирев В. И., Кузнецов А. Ю., Турьянский Б. В. Повышение производительности системы оборотного водоснабжения ОАО «Карельский окатыш» // Обогащение руд. 2008. № 2. С. 35–37.
  7. Kuzin E. N., Kruchinina N. E. Titanium-containing coagulants for foundry wastewater treatment // CIS Iron and Steel Review. 2020. Vol. 20, № 2. P. 66–69. https:// doi.org/10.17580/cisisr.2020.02.14
  8. Prieto-Rodriguez L., Oller I., Klamerth N., Aguera A., Rodriguez E. M., Malato S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effl uents // Water Research. 2013. Vol. 47, № 4. P. 1521–1528. https://doi. org/10.1016/j.watres.2012/11.002 
  9. Oller S. Malato, Sanchez-Perez J. A., Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination. A review // Science of the Total Environment. 2011. Vol. 409, № 20. P. 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
  10. Schilter D. Phenol oxidation causes complications // Nature Reviews Chemistry. 2018. Vol. 2. P. 1–2. https:// doi.org/10.1038/s41570-018-0129
  11. Villegas L. G. C., Mashhadi N., Chen M. A Short Review of Techniques for Phenol Removal from Wastewater // Current Pollution Reports. 2016. Vol. 2. P. 157–167. https://doi.org/10.1007/s40726-016-0035-3
  12. Vipin S., Varun G., Paramvir S., Alok G. Abatement of formaldehyde with photocatalytic and catalytic oxidation: a review // International Journal of Chemical Reactor Engineering. 2021. Vol. 19, № 1. P. 1–29. https://doi. org/10.1515/ijcre-2020-0003
  13. Jingjing Pei, Jianshun S. Zhang. Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal // HVAC and R Research. 2011. Vol. 17, № 4. P. 476–503. https://doi.org/10.1080/1078 9669.2011.587587
  14. Thiruvenkatachari R., Vigneswaran S., Moon I. S. A review on UV/TiO2 photocatalytic oxidation process (Journal Review) // Korean Journal of Chemical Engineering. 2008. Vol. 25. P. 64–72. https://doi.org/10.1007/ s11814-008-0011-8
  15. Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000. Vol. 1, № 1. P. 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2
  16. Устинова М. Н., Жунусов Н. С. Деструкция действующего вещества тетрациклина под действием УФ-облучения // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2021. Т. 21, вып. 3. С. 246–253. https://doi. org/10.18500/1816-9775-2021-21-3-246-253
  17. Лурье Ю. Ю. Аналитическая химия промышленных сточных вод. М. : Химия, 1984. 448 с.
  18. ПНД Ф 14.1;2.97-97. Количественный химический анализ вод. Методика выполнения измерений массовой концентрации формальдегида в пробах природных и очищенных сточных вод. М. : Изд-во стандартов, 1997. 11 с.
  19. Alnaizy R., Akgerman A. Advanced oxidation of phenolic compounds // Advances in Environmental Research. 2000. Vol. 4. P. 233–244. https://doi.org/10.1016/S1093- 0191(00)00024-1
  20. Иванцова Н. А., Паничева Д. А., Кузнецов О. Ю. Окислительная деструкция фенола в водной среде при совместном воздействии ультрафиолетового излучения и пероксида водорода // Химия высоких энергий. 2020. Т. 54, № 1. С. 13–18. https://doi.org/10.31857/ S0023119320010076
  21. Иванцова Н. А. Фотоокислительная деструкция формальдегида в водной среде // Химия высоких энергий. 2021. Т. 55, № 3. С. 215–218. https://doi.org/10.31857/ S0023119321030050
Received: 
25.02.2022
Accepted: 
14.04.2022
Published: 
30.09.2022