For citation:
Martynenko A. V., Karavaeva O. A., Fomin A. S., Guliy O. I. Optimization of phage display technology for obtaining antibodies specific to tetracycline. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 2, pp. 202-207. DOI: 10.18500/1816-9775-2024-24-2-202-207, EDN: XXJNWQ
Optimization of phage display technology for obtaining antibodies specific to tetracycline
Large-scale production and use of antimicrobials in human, veterinary and agricultural applications has led to antibiotic contamination of water resources. Therefore, it is relevant to develop methods for monitoring the content of antibiotics, especially in water resources. Biosensor methods are successful for the analysis of antibiotics. One of the main elements of a biosensor system is the selection of a recognition element. An alternative tool for selecting a sensitive element (recognition element) is phage display of antibodies, which makes it possible to obtain antibodies to low molecular weight antigens. The purpose of the work was to conduct research to develop and optimize the methodology for obtaining antibodies specifi c to tetracycline by using phage display technology, and to evaluate the possibility of their use for the indication of tetracycline. The work included studies of optimization of conditions for the production of phage antibodies specifi c to tetracycline, as well as the preservation of their activity during storage. The promise of using phage display technology for the production of anti-tetracycline antibodies has been shown. Using the dot immunoassay method, the possibility of using the obtained phage antibodies for tetracycline detection was shown.
- Lu M. Y., Kao W. C., Belkin S., Cheng J. Y. A smartphonebased whole-cell array sensor for detection of antibiotics in milk // Sensors (Basel). 2019. Vol. 19. P. 3882. https:// doi.org/10.3390/s19183882
- Van Boeckel T. P., Brower C., Gilbert M., Grenfell B. T., Levin S. A., Robinson T. P., Teillant A., Laxminarayan R. Global trends in antimicrobial use in food animals // Proc. Natl. Acad. Sci. USA. 2015. Vol. 112, № 18. P. 5649 –5654. https://doi.org/10.1073/ pnas.1503141112
- Purohit B., Vernekar P. R., Shetti N. P., Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis // Sens. Int. 2020. Vol. 1. P. 100040. https://doi.org/10.1016/j.sintl.2020.100040
- Guliy O. I., Bunin V. D. Electrooptical analysis as sensing system for detection and diagnostics bacterial cells, in the book, biointerface engineering: Prospects in medical diagnostics and drug delivery // Springer Nature Singapore Pte Ltd. 2020. Vol. 11. P. 233–254. https:// oi.org/10.1007/978-981-15-4790-4_11
- Тикунова Н. В., Морозова В. В. Фаговый дисплей на основе нитчатых бактериофагов: применение для отбора рекомбинантных антител // Acta Naturae (русскоязычная версия). 2009. Т. 1, № 3. С. 22–31.
- Smith G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface // Science. 1985. Vol. 228. P. 1315–1317. https:// doi.org/10.1126/science.4001944
- Smith G. P., Scott J. K. Libraries of peptides and proteins displayed on filamentous phage // Methods in enzymology. 1993. Vol. 217. P. 228–257. https://doi.org/10.1016/0076-6879(93)17065-d
- McCafferty J., Griffi ths A. D., Winter G., Chiswell D. J. Phage antibodies: Filamentous phage displaying antibody variable domains // Nature. 1990. Vol. 348. P. 552–554. https://doi.org/10.1038/348552a0
- Гулий О. И., Евстигнеева С. С., Дыкман Л. А. Использование фаговых антител для определения микробных клеток (обзор) // Прикладная биохимия и микробиология. 2023. Т. 59, № 2. C. 150–166. https://doi.org/10.31857/S0555109923020083
- Guliy O. I., Evstigneeva S. S., Khanadeev V. A., Dykman L. A. Antibody phage display technology for sensor-based virus detection: Current status and future prospects // Biosensors. 2023. Vol. 13. P. 640. https://doi.org/10.3390/bios13060640.
- Staroverov S. A., Volkov A. A., Fomin A. S., Laskavuy V. N., Mezhennyy P. V., Kozlov S. V., Larionov S. V., Fedorov M. V., Dykman L. A., Guliy O. I. The usage of phage mini-antibodies as a means of detecting ferritin concentration in animal blood serum // J. Immunoassay Immunochem. 2015. Vol. 36. P. 100–110. https://doi.org /10.1080/15321819.2014.899257
- Staroverov S. A., Kozlov S. V., Fomin A. S., Gabalov K. P., Khanadeev V. A., Soldatov D. A., Domnitsky I. Y., Dykman L. A., Akchurin S. V., Guliy O. I. Synthesis of silymarin-selenium nanoparticle conjugate and examination of its biological activity in vitro // ADMET DMPK. 2021. Vol. 9. P. 255–266. https://doi.org/10.5599/admet.1023.eCollection 2021.
- Staroverov S. A., Sidorkin V. A., Fomin A. S., Shchyogolev S. Y., Dykman L. A. Biodynamic parameters of micellar diminazene in sheep erythrocytes and blood plasma // J. Vet. Sci. 2011. Vol. 12. P. 303–307. https://doi.org/10.4142/jvs.2011.12.4.303
- Гулий О. И., Алсовэйди А. К. М., Фомин А. С., Габалов К. П., Староверов С. А., Караваева О. А. Фаговые антитела как биорецепторы для определения ампициллина // Прикладная биохимия и микробиология. 2022. Т. 58. С. 513–519. https://doi.org/10.31857/S0555109922050087
- Charlton K. A., Moyle S., Porter A. J., Harris W. J. The isolation of super-sensitive anti-hapten antibodies from combinatorial antibody libraries derived from sheep // The Journal of Immunology. 2000. Vol. 164. P. 6221– 6229. https://doi.org /10.1016/s0956 -5663(01)00192-0
- Shah K., Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): The basics // Br. J. Hosp. Med. (Lond). 2016. Vol. 77, № 7. P. 98–101. https://doi.org/10.12968/hmed.2016.77.7.C98
- Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. Vol. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
- Guliy O. I., Zaitsev B. D., Burygin G. L., Karavaeva O. A., Fomin A. S., Staroverov S. A., Borodina I. A. Prospects for the use of gold nanoparticles to increase the sensitivity of an acoustic sensor in the detection of microbial cells // Ultrasound Med. Biol. 2020. Vol. 46. P. 1727–1737. https://doi.org/10.1016/j.ultrasmedbio.2020.03.014
- Sales of veterinary antimicrobial agents in 31 European countries in 2018 Trends from 2010 to 2018. Tenth ESVAC report. URL: https://www.ema.europa.eu/en/ documents/report/sales-veterinary-antimicrobial-agents31-european-countries-2018-trends-2010-2018-tenthesvac-report_en.pdf. (дата обращения: 19.03.2023).