Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Stepukhovich М. S., Abramova A. M., Bakal A. A., Goryacheva I. Y. Novel degradable photocatalysts for wastewater treatment. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 2, pp. 148-158. DOI: 10.18500/1816-9775-2023-23-2-148-158, EDN: FJKTJY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 78)
Полный текст в формате PDF(En):
(downloads: 46)
Article type: 

Novel degradable photocatalysts for wastewater treatment

Stepukhovich Мariya S. , Saratov State University
Abramova Anna M., Saratov State University
Bakal Artem A., Saratov State University
Goryacheva Irina Y., Saratov State University

The weakening of the manmade load on the environment has become a global goal of humanity. The accumulation of toxic substances in effl uents can increase the acceleration of pollution of the planet’s watersheds, resulting in biota pollution. To solve this problem, it is necessary to create photocatalysts that cause self-excitation under the ignition of light. Also, important parameters of photocatalysts are simple synthesis and low cost. This article demonstrates a one-step approach to the synthesis of carbon nanostructures (CNS) with photocatalytic activity. For this purpose, the “green chemistry ” method is used – hydrothermal treatment of various polysaccharides (sodium dextran sulfate (SDS), starch, pectin), which opens up the possibility of recycling products. A comprehensive study of the properties of the synthesized CNS has been carried out. To study the optical properties of CNS, absorption and luminescence spectroscopy, and IR spectroscopy, have been used. The CNS obtained have been successfully used in the processes of photocatalytic destruction of a model of the organic dye tartrazine, which is widely used in the fi ber and textile industries. The eff ect of lyophilization on the photocatalytic properties of СNS has been studied, and cytotoxicity has been evaluated.

  1. Hennig H. Homogeneous photo catalysis by transition metal complexes // Coordination Chemistry Reviews. 1999. Vol. 182, № 1. P. 101–123. 
  2. Gonçalves A. A., Gagnon G. A. Recent technologies for ballast water treatment // Ozone: Science & Engineering. 2012. Vol. 34, № 3. P. 174–195.
  3. Lathasree S., Rao A. N., SivaSankar B., Sadasivam V., Rengaraj K. Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions // Journal of Molecular Catalysis A: Chemical. 2004. Vol. 223, № 1-2. P. 101–105.
  4. Ola O., Maroto-Valer M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2015. Vol. 24. P. 16–42.
  5. Zhao H., Tian F., Wang R., Chen R. A review on bismuthrelated nanomaterials for photocatalysis // Reviews in Advanced Sciences and Engineering. 2014. Vol. 3, № 1. P. 3–27.
  6. Gonçalves J. M., da Silva M. I., Angnes L., Araki K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: A review // Journal of Materials Chemistry A. 2020. Vol. 8, № 5. P. 2171–2206.
  7. Yang P., Zhao J., Zhang L., Li L., Zhu Z. Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots // ChemistryA European Journal. 2015. № 21 (23). P. 8561–8568
  8. Wang R., Lu K. Q., Tang Z. R., Xu Y. J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis // Journal of Materials Chemistry A. 2017. Vol. 5, № 8. P. 3717–3734.
  9. Zhang H., Ming H., Lian S., Huang H., Li H., Zhang L., Lee S. T. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light // Dalton Transactions. 2011. Vol. 40, № 41. P. 10822–10825.
  10. Wang W., Serp P., Kalck P., Faria J. L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modifi ed sol–gel method // Journal of Molecular Catalysis A: Chemical. 2005. Vol. 235. № 1-2. P. 194–199.
  11. Zhou Y., Zahran E. M., Quiroga B. A., Perez J., Mintz K. J., Peng Z., Leblanc R. M. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence // Applied Catalysis B: Environmental. 2019. Vol. 248. P. 157–166.
  12. Ma Z., Ming H., Huang H., Liu Y., Kang Z. One-step ultrasonic synthesis of fl uorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability // New Journal of Chemistry. 2012. Vol. 36, № 4. P. 861–864.
  13. Aoudjit L., Martins P. M., Madjene F., Petrovykh D. Y., Lanceros-Mendez S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor // Journal of Hazardous Materials. 2018. Vol. 344. P. 408–416.
  14. Hill S., Galan M. C. Fluorescent carbon dots from mono-and polysaccharides: synthesis, properties and applications // Beilstein Journal of Organic Chemistry. 2017. Vol. 13, № 1. P. 675–693.
  15. Xiong Y., Schneider J., Ushakova E. V., Rogach A. L. Infl uence of molecular fl uorophores on the research fi eld of chemically synthesized carbon dots // Nano Today. 2018. Vol. 23. P. 124–139.
  16. Behnajady M. A., Modirshahla N., Hamzavi R. Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst // Journal of Hazardous Materials. 2006. Vol. 133, № 1–3. P. 226–232.
  17. Demina P. A., Voronin D. V., Lengert E. V., Abramova A. M., Atkin V. S., Nabatov B. V., Bukreeva T. V. Freezing-induced loading of TiO2 into porous vaterite microparticles: Preparation of CaCO3/TiO2 composites as templates to assemble UV-responsive microcapsules for wastewater treatment // ACS Omega. 2020. Vol. 5, № 8. P. 4115–4124.
Short text (in English):
(downloads: 31)