Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Kovrizhnikov E. V., Balykova A. N., Kukleva L. M., Naryshkina E. A., Fedorov A. V., Chervyakova N. S., Eroshenko G. A., Kutyrev V. V. Molecular genetic analysis of Yersinia pestis strains isolated in diff erent epizootic periods on the territory of the Ural-Embensky desert natural plague focus area in the twentieth century. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 4, pp. 437-446. DOI: 10.18500/1816-9775-2023-23-4-437-446, EDN: PYHRCY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 49)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
616.98:579.842.23
EDN: 
PYHRCY

Molecular genetic analysis of Yersinia pestis strains isolated in diff erent epizootic periods on the territory of the Ural-Embensky desert natural plague focus area in the twentieth century

Autors: 
Kovrizhnikov Ekaterina V., Russian Research Anti-Plague Institute “Microbe”,
Balykova Alina N., Saratov State University
Kukleva Lyubov M., Russian Research Anti-Plague Institute “Microbe”,
Naryshkina Ekaterina A., Russian Research Anti-Plague Institute “Microbe”,
Fedorov Andrey V., Russian Research Anti-Plague Institute “Microbe”,
Chervyakova Nadezhda S., Russian Research Anti-Plague Institute “Microbe”,
Eroshenko Galina A., Russian Research Anti-Plague Institute "Microbe"
Kutyrev Vladimir V., Russian Research Anti-Plague Institute “Microbe”,
Abstract: 

We performed a molecular genetic analysis of Yersinia pestis strains isolated in the Ural-Embensky desert natural plague focus area in the twentieth century. We studied 24 strains of Y. pestis isolated on this territory since 1945 to1991, as well as 21 strains of Y. pestis from adjacent territories. All of the strains studied from the Ural-Embensky natural focus of plague belonged to the highly virulent and epidemically signifi cant medieval biovar of the main subspecies Y. pestis. According to the results of the WG-SNP analysis and subsequent phylogenetic reconstruction based on 1353 SNPs, the maximum likelihood method (Maximum Likelihood, GTR model) revealed 6 key phylopopulations, which included strains isolated during diff erent periods of epidemic and epizootic activity in the study area. It has been established that there were three waves of spread of the 2.MED1 branch of the medieval biovar to the territory of Ural-Embensky desert natural plague focus. Strains isolated before 1945 belong to the fi rst wave of spread of the 2.MED1 branch to the territory of the Northern Caspian Region. The second wave is considered to be the 1968–1974 strains. They have close genetic similarities with strains from the Mangyshlak (1978) and Ustyurt desert plague foci (1962 and 1975). The third wave includes strains isolated after 1966. They are genetically close to the strains from the North Aral foci (1945). The data obtained will be used for molecular-genetic detailing of the certifi cation of foci in which this highly virulent medieval Y. pestis biovar circulates. They are important for determining the patterns of spatiotemporal distribution of highly virulent strains of the 2.MED1 branch of the medieval biovar in the 20th century and for long-term forecasting of the epizootic activity of plague foci in the North-Eastern Caspian region in the current 21st century.

Reference: 
  1. Абдел З. Ж., Ерубаев Т. К., Токмурзиева Г. Ж., Аймаханов Б. К., Далибаев Ж. С., Мусагалиева Р. С., Жумадилова З. Б., Мека-Меченко В. Г., Мека-Меченко Т. В., Матжанова А. М., Абдрасилова А. А., Умарова С. К., Рысбекова А. К., Есимсеит Д. Т., Абделиев Б. З., Коныратбаев К. К., Искаков Б. Г., Белый Д. Г., Ескермесов М. К., Кулемин М. В., Аскар Ж. С., Калдыбаев Т. Е., Мухтаров Р. К., Давлетов С. Б., Сутягин В. В., Лездиньш И. А. Демаркация границ Центральноазиатского пустынного природного очага чумы Казахстана и мониторинг ареала основного носителя Rhombomys opimus // Проблемы особо опасных инфекций. 2021. № 2. С. 71–78.
  2. Аймаханов Б. К., Куница Т. Н., Бурделов Л. А., Мекамеченко В. Г., Сагиев З. А., Садовская В. П., Даниярова А. Б., Умбетьярова Л. Б., Далибаев Ж. С., Хамзин Т. Х., Сараев Ф. А., Камзина Ж. К. Анализ эпизоотолого-эпидемиологической ситуации по чуме в Атырауской области // West Kazakhstan Medical Journal. 2017. № 4 (56). С. 4–13.
  3. Паспорт регионов Казахстана по особо опасным инфекциям / под ред. д-ра биол. наук, проф. Л. А. Бурделова. Алматы : NV Print, 2015. 179 с.
  4. Кадастр эпидемических и эпизоотических проявлений чумы на территории Российской Федерации и стран ближнего зарубежья (с 1876 по 2016 г.) / под ред. акад. РАМН В. В. Кутырева и проф. А. Ю. Поповой. Саратов : ООО «Амирит», 2016. 248 с.
  5. Eroshenko G. A., Popov N. V., Al’khova Z. V., Kukleva L. M., Balykova A. N., Chervyakova N. S., Naryshkina E. A., Kutyrev V. V. Evolution and circulation of Yersinia pestis in the Northern Caspian and Northern Aral Sea regions in the 20th–21st centuries // PLoS ONE. 2021. Vol. 2. P. e0244615. https://doi.org/10.1371/journal.pone.0244615
  6. Wick R. R., Judd M. L., Gorrie L. C., Holt K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads // PLoS Computational Biology. 2017. Vol 13, № 6. P. e1005595. https://doi.org/10.1371/ journal.pcbi.1005595
  7. Armengol G., Sarhadi V.K., Rönty M., Tikkanen M., Knuuttila A., Knuutila S. Driver gene mutations of nonsmall-cell lung cancer are rare in primary carcinoids of the lung: NGS study by ion torrent // Lung. 2015. Vol. 193. P. 303–308. https://doi.org/10.1007/s00408- 015-9690-1
  8. Cock J. A. P., Antao T., Chang J. T., Chapman B. A., Cox C. J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., de Hoon M. J. L. Biopython: Freely available Python tools for computational molecular biology and bioinformatics // Bioinformatics. 2009. Vol. 25, № 11. P. 1422.
  9. Motro Y., Moran-Gilad J. Next-generation sequencing applications in clinical bacteriology // Biomolecular Detection and Quantifi cation. 2017. Vol. 14. P. 1–6. https://doi.org/10.1016/j.bdq.2017.10.002.
  10. Wu M. C., Kraft P., Epstain M. P., Taylor D. M., Chanock S. J., Hunter D. J., Lin X. Powerful SNP-Set Analysis for case-control genome-wide association studies // The American Journal of Human Genetics. 2010. Vol. 86. P. 929–942. https://doi.org/10.1016/j.ajhg.2010.05.002
  11. Wu Y., Hao T., Qian X., Zhang X., Songz Y., Yang R., Cui Y. Small insertions and deletions drive genomic plasticity during adaptive evolution of Yersinia pestis // Microbiology Spectrum. 2022. Vol. 10. P. E02242-21. https://doi.org/10.1128/spectrum.02242-21
  12. De Bruyn A., Martin D. P., Lefeuvre P. Phylogenetic reconstruction methods: An overview // Molecular Plant Taxonomy: Methods and Protocols. 2014. Vol. 1115. P. 257–277. https://doi.org/10.1007/978-1- 62703-767-9_13
  13. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins // Nucleic Acids Research. 2015. Vol. 43. P. e15. https://doi.org/10.1093/nar/gku1196  
  14. Балыкова А. Н., Куклева Л. М., Горюнова П. А., Шевченко К. С., Коврижников А. В., Краснов Я. М., Червякова Н. С., Ерошенко Г. А., Кутырев В. В. SNPпрофили штаммов Yersinia pestis средневекового биовара из очагов чумы Прикаспия // Проблемы особо опасных инфекций. 2022. № 4. С. 41–49. https://doi.org/10.21055/0370-1069-2022-4-41-49 
Received: 
15.06.2023
Accepted: 
01.07.2023
Published: 
25.12.2023
Short text (in English):
(downloads: 36)