Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Bayburdov T. А., Shmakov S. L. Modification of solid-phase polymeric surface by means of grafting of acrylic monomers. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 3, pp. 282-291. DOI: 10.18500/1816-9775-2024-24-3-282-291, EDN: LWCWFF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 38)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
66.095.26-922.3:678.744.32:691.175.5/.8
EDN: 
LWCWFF

Modification of solid-phase polymeric surface by means of grafting of acrylic monomers

Autors: 
Bayburdov Telman А., Saratov State University
Shmakov Sergei L., Saratov State University
Abstract: 

Graft copolymerization onto a solid polymer surface is an eff ective tool for its modifi cation. A large number of works have been published and require systematization. A search and review of English-language scientifi c literature devoted to the graft copolymerization of acrylic monomers onto a polymeric solid-phase surface have been carried out. Grafting onto plates and fi lms, as well as fi bers and colloidal particles, is considered. It has been revealed that the most popular substrates for graft copolymerization are, besides polyethylene, propylene and polyethylene terephthalate; polyurethanes, polyfl uoroethylenes, rubbers, etc. Graft polymerization mainly proceeds on amorphous areas of the substrate and does not destroy the crystalline phase. It is possible to use the methods of controlled radical polymerization (ATRP, RAFT). Of the acrylic monomers, acrylic and methacrylic acids, glycidyl acrylate and glycidyl methacrylate, and others have been used, while the main method has been UV photopolymerization with an initiator–benzophenone. Of the three aliphatic ketones (acetone, methyl ethyl ketone and methyl propyl ketone), acetone has been the best solvent. Cophotoinitiators have been also used (a synergistic eff ect was observed), corona discharge, gamma radiation (60Co), ozone and plasma treatment, and a supercritical CO2 medium. The degree of grafting has been controlled by changing the soaking time in the monomer, pressure, concentration of monomer and initiator in the liquid phase, reaction temperature and reaction time. A new technology of graft polymerization with photopatterning has also been proposed. Problems of graft polymerization in terms of surface modifi cation of polymer materials (hydrophilization of the surface, improving paintability and wettability, enhancing adhesion to certain surfaces, biocompatibility) are touched upon, and possible areas of their application are outlined.

Reference: 
  1. Bayburdov T. A., Shmakov S. L. Grafting of acrylic monomers onto polyethylene surface (review). Izvestiya of Saratov University. Chemistry. Biology. Ecolo gy, 2024, vol. 24, iss. 2, pp. 153–162 (in Russian). https:// doi.org/10.18500/1816-9775-2024-24-2-153-162, EDN: HNDEYE
  2. Tazuke S., Kimura H. Modifi cation of polypropylene fi lm surface by graft polymerization of acrylamide. Makromol. Chem., 1978, vol. 179, pp. 2603–2612.
  3. Zhang P. Y., Rånby B. Surface modifi cation by continuous graft copolymerization. II. Photoinitiated graft copolymerization onto polypropylene fi lm surface. Journal of Applied Polymer Science, 1991, vol. 43, pp. 621–636.
  4. Chun H. J., Cho S. M., Lee Y. M., Lee H. K., Suh T. S. Graft copolymerization of mixtures of acrylic acid and acrylamide onto polypropylene film. J. Appl Polym Sci., 1999, vol. 72, pp. 251–256.
  5. Lei J., Li Q., He G., Lin X. Surface graft copolymerization of acrylamide onto BOPP fi lm through corona discharge. Acta Chim Sin., 2000, vol. 58, pp. 598–600.
  6. Gatenholm P., Ashida T., Hoffman A.S. Hybrid biomaterials prepared by ozone-induced polymerization. I. Ozonation of microporous polypropylene. J. Polym Sci., 1997, vol. 35, no. 8, pp. 1461–1467.
  7. Karlsson J. O., Gatenholm P. Surface mobility of grafted hydrogels. Macromolecules, 1999, vol. 32, pp. 7594–7598.
  8. Dong Z., Liu Z., Han B., He J., Jiang T., Yang G. Modification of isotactic polypropylene film by grafting of acrylic acid using supercritical CO2 as a swelling agent. J. Mater. Chem., 2002, vol. 12, pp. 3565–3569.
  9. Dong Z., Liu Z., Han B., Pei X., Liu Lili, Yang G. Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO2 as a swelling agent. J. of Supercritical Fluids, 2004, vol. 31, pp. 67–74.
  10. Hu M.-X., Yang Q., Xu Z.-K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethylmethacrylate via a synergistic effect of photoinitiators. J. Membr. Sci., 2006, vol. 285, pp. 196–205.
  11. Bucio E., Arenas E., Burillo G. Radiation grafting of Nisopropylacrylamide onto polypropylene fi lms by preirradiation method. Mol. Cryst. Liq Cryst., 2006, vol. 447, pp. 203–213.
  12. Meng J., Li J., Zhang Y., Ma S. A novel controlled grafting chemistry fully regulated by light for membrane surface hydrophilization and functionalization. Journal of Membrane Science, 2014, vol. 455, pp. 405–414.
  13. Uchida E., Uyama Y., Ikada Y. Surface graft polymerization of ionic monomers onto PET by UV irradiation without degassing. J. Appl. Polym. Sci., 1993, vol. 47, pp. 417–424. 
  14. Uchida E., Iwata H., Ikada Y. Surface structure of poly(ethylene terephthalate) film grafted with poly(methacrylic acid). Polymer, 2000, vol. 41, pp. 3608–3614.
  15. Chen K.-S., Tsai J.-C., Chou C.-W., Yang M.-R., Yang J.-M. Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Mater. Sci. Eng. C., 2002, vol. 20, pp. 203–208.
  16. Ying L., Yin C., Zhuo R. X., Leong K. W., Mao H. Q., Kang E. T. Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyteculture. Biomacromolecules, 2003, vol. 4, pp. 157–165.
  17. Ivanchenko M. I., Kulik E. A., Ikada Y. Serum protein adsorption and platelet adhesion to polyurethane grafted with methoxypoly(ethylene glycol) methacrylate polymers. In: Brush J. L., Horbett T. A., eds. Protein at Interfaces II. ACS Symp Ser., Washington, DC, ACS Press, 1995, pp. 463–477.
  18. Guan J. J., Gao C. Y., Shen J. C. Preparation of functional poly(etherurethane) for immobilization of human living cells. I. Surface graft polymerization of poly(etherurethane) with 2-(dimethyl-amino)ethyl methacrylate and quaternization of grafted membrane. Eur. Polym. J., 2000, vol. 36, pp. 2707–2713.
  19. Guan J. J., Gao C. Y., Feng L. X., Shen J. C. Surface photo grafting of polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelial cell attachment and growth. J. Biomater. Sci. Polym. Ed., 2000, vol. 11, pp. 523–536.
  20. Guan J. J., Gao C. Y., Feng L. X., Shen J. C. Surface modification of polyurethane for promotion of cell adhesion and growth. I. Surface photo-grafting with N,Ndimethylaminoethyl methacrylate and cytocompatibility of the modified surface. J. Mater. Sci. Mater. Med., 2001, vol. 12, pp. 447–452.
  21. Zhu Y., Gao C., Guan J., Shen J. Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide. Journal of Materials Science: Materials in Medicine, 2004, vol. 15, pp. 283–289.
  22. Weibel D. E., Vilani C., Habert A. C., Achete C. A. Surface modification of polyurethane membranes using acrylic acid vapour plasma and its effects on the pervaporation processes. Journal of Membrane Science, 2007, vol. 293, pp. 124–132.
  23. Oehr C., Mueller M., Elkin B., Hegemann D., Vohrer U. Plasma grafting – a method to obtain monofunctional surfaces. Surf Coat Technol., 1999, vols. 116– 119, pp. 25–35.
  24. Wu S. Y., Kang E. T., Neoh K. G., Tan K. L. Electroless deposition of copper on surface modified poly(tetrafl uoroethylene) fi lms from graft copolymerization and silanization. Langmuir, 2000, vol. 16, pp. 5192–5198.
  25. Wu S. Y., Kang E. T., Neoh K. G., Tan K. L. Surface modifi cation of poly(tetrafl uoroethylene) fi lms by graft copolymerization for adhesion enhancement with electrolessly deposited copper. J. Adhes. Sci. Technol., 2000, vol. 14, pp. 1451–1468.
  26. Yu J. J., Ryu S. H. Ultraviolet-initiated photografting of glycidyl methacrylate onto styrene–butadiene rubber. J. Appl. Polym. Sci., 1999, vol. 73, pp. 1733–1739.
  27. Anancharungsuk W., Tanpantree S., Sruanganurak A., Tangboriboonrat P. Surface modification of natural rubber film by UV-induced graft copolymerization with methyl methacrylate. J. Appl. Polym. Sci., 2007, vol. 104, pp. 2270–2276.
  28. Promsung R., Nakaramontri Y., KummerloЁwe C., Johns J., Vennemann N., Saetung N., Kalkornsurapranee E. Grafting of various acrylic monomers on to natural rubber: Effects of glutaraldehyde curing on mechanical and thermomechanical properties. Materials Today Communications, 2021, vol. 27, article no. 102387. 9 p. https://orcid.org/10.1016/j.mtcomm.2021.102387
  29. Okuo M., Harada E., Higuchi Y. Surface grafting treatment by irradiation with active energy ray. Japanese Patent JP1998-245,763; Aug 31, 1998.
  30. Guo K., Yi M. AAc photografted porous polycabonate films and its controlled release system. Journal of Controlled Release, 2001, vol. 71, pp. 221–225.
  31. Kang E. T., Neoh K. G., Tan K. L., Liaw D. J. Surface photodegradation and modifi cation of some substituted polyacetylene fi lms. Polym. Degrad. Stab., 1993, vol. 40, pp. 45–52.
  32. Ulbricht M., Oechel A., Lehmann C., Tomaschewski G., Hicke H.-G. Gas-phase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultrafiltration membranes. J. Appl. Polym. Sci., 1995, vol. 55, pp. 1707–1723.
  33. Gancarz I., Pozniak G., Bryjak M., Frankiewiez A. Modifi cation of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym., 1999, vol. 50, pp. 317–26.
  34. Carlmark A., Malmström E. Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature. J. Am. Chem. Soc., 2002, vol. 124, no. 6, pp. 900–901.
  35. Luo N., Hutchison J. B., Anseth K. S., Bowman C. N. Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrate. J. Polym. Sci: Part A: Polym. Chem., 2002, vol. 40, pp. 1885–1891.
  36. Zhu Y., Gao C., Shen J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials, 2002, vol. 23, pp. 4889– 4895.
  37. Wavhal D. S., Fisher E. R. Membrane Surface Modifi cation by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling. Langmuir, 2003, vol. 19, no. 1, pp. 79–85. 
  38. Wirsen A., Sun H., Albertsson A.C. Solvent-free vaporphase photografting of acrylamide onto poly(ethylene terephthalate). Biomacromolecules, 2005, vol. 6, pp. 2697–2702.
  39. Ke Y., Wang Y., Ren L., Lu L., Wu G., Chen X. Photografting polymerization of polyacrylamide on PHBV films (I). J. Appl. Polym. Sci., 2007, vol. 104, pp. 4088– 4095.
  40. Styan K. E., Easton C. D., Weaver L. G., Meagher L. Onereactant photografting of ATRP initiators for surfaceinitiated polymerization. Macromol. Rapid Commun., 2016. 8 p. https://orcid.org/ 10.1002/marc.201600059
  41. Yandi W., Nagy B., Skallberg A., Uvdal K., Zimmermann R., Liedberg B., Ederth T. Polyampholytic Poly(AEMA-co-SPMA) thin fi lms and their potential for antifouling applications. ACS Appl. Polym. Mater., 2021, vol. 3, pp. 5361−5372. https://orcid.org/10.1021/acsapm.1c00383
  42. Zhang P.Y., Rånby B. Surface Modifi cation by Continuous graft copolymerization. III. Photoinitiated graft copolymerization onto poly (ethylene Terephthalate) Fiber Surface. Journal of Applied Polymer Science, 1990, vol. 41, pp. 1459–1467.
  43. Zhang P. Y., Rånby B. Surface modifi cation by continuous graft copolymerization. IV. Photoinitiated graft copolymerization onto polypropylene fi ber surface. Journal of Applied Polymer Science, 1990, vol. 41, pp. 1469–1478.
  44. Shukla S. R., Athalye A. R. Ultraviolet radiationinduced graft copolymerization of 2-hydroxyethyl methacrylate onto polypropylene. Journal of Applied Polymer Science, 1994, vol. 51, pp. 1567–1574.
  45. Kawai T., Saito K., Sugita K., Kawakami T., Kanno J., Katakai A., Seko N., Sugo T. Preparation of hydrophilic amidoxime fi bers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat. Phys. Chem., 2000, vol. 59, pp. 405–411.
  46. Ghosh P., Das D. Modifi cation of cotton by acrylic acid (AA) in the presence of NaH2PO4 and K2S2O8 as catalysts under thermal treatment. Eur. Polm. J., 2000, vol. 36, pp. 2505–2511.
  47. Zahran M., Mahmoud R. Peroxydiphosphate-metal ion-cellulose thiocarbonate redox system-induced graft copolymerization of vinyl monomers onto cotton fabric. J. Appl. Polym. Sci., 2003, vol. 87, pp. 1879– 1889.
  48. Aliouche D., Sid B., Ait-Amar H. Graft-copolymerization of acrylic monomers onto cellulose. Infl uence on fi bre swelling and absorbency. European Journal of Control, 2006, vol. 31, pp. 527–540.
Received: 
23.05.2024
Accepted: 
07.06.2024
Published: 
30.09.2024
Short text (in English):
(downloads: 23)