Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Kozyreva E. A., Dmitriev Y. A., Shipovskaya A. B., Kossovich L. Y. ESTIMATION OF FIBER-FORMING ABILITY OF CHITOSAN BY PHYSICOCHEMICAL PARAMETERS OF ITS SOLUTIONS. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2011, vol. 11, iss. 1, pp. 22-25. DOI: 10.18500/1816-9775-2011-11-1-22-25, EDN: OGDLRD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 74)
Полный текст в формате PDF(En):
(downloads: 50)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
591.477.14-036:532.135
EDN: 
OGDLRD

ESTIMATION OF FIBER-FORMING ABILITY OF CHITOSAN BY PHYSICOCHEMICAL PARAMETERS OF ITS SOLUTIONS

Autors: 
Kozyreva Elena Alexeevna, Saratov State University
Dmitriev Y. A., Saratov State University
Shipovskaya Anna B., Saratov State University
Kossovich L. Yu., Saratov State University
Abstract: 

The paper discusses the results of studying the physicochemical properties of a concentrated acetic-acid solution of chitosan with a stabilized agent added (0.05% of the solution weight), which enables a high fiber-forming ability of the polymer to be revealed. The process of fiber formation from chitosan solution under the action of an electric high-intense field was estimated qualitatively and quantitatively. Chitosan fibers with an average diameter of 280 nm have been obtained, their size-distribution function has been plotted.

Reference: 
  1. Electrospinning of chitosan / K. OhkawaD. ChaH. Kim et al. // Macromolec. Rapid Communic. 2004. Vol. 25. P. 1600-1605.                                                                                                                                                                  
  2. Duan B, Don C., Yuan X., Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide) // J. Biomater. Sci. Polym. Ed. 2004. Vol. 15, № 6. Р. 797 811.                                                                                 
  3. Desai K.Kit K.Li J.Zivanovic S. Morphological and surface properties of electrospun chitosan nanofibers // Biomacromolec. 2008. Vol. 9, № 3. P. 1000-1006.                                                                                                  
  4. Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan / J.-F. ZhangD.-Z. YangF. Xu et al. // Macromolec. 2009. Vol. 42, № 14. P. 5278-5284.                                                  
  5. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture / K. T. ShalumonK. H. AnulekhaC. M. Girish et al. // Carbo-hydrate Polym. 2010. Vol. 80, № 2. P. 413-419.        
  6. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell / Z. G. ChenP. W. WangB. Wei et al. // Acta Biomaterialia. 2010. Vol. 6, № 2. P. 372-382.  EDN: NZVRTJ     
  7. Исследование реологических свойств разбавленных и умеренно концентрированных растворов хитозана / А. М. СклярА. И. ГамзазадеЛ. З. Роговина и др. // Высокомолек. соед. 1981. Т. 23А, № 6. С. 1396-1403.   
  8. Вихорева Г. А. Роговина С. З.Пчелко О. М.Гальбрайх Л. С. Фазовое состояние и реологические свойства системы хитозан - уксусная кислота - вода // Высоко-молекулярные соед. 2001. Т. 43Б, № 6. С. 1079-1084.   
  9. Папков С.П. Теоретические основы производства химических волокон. М., 1990. 272 с.                        
  10. Filatov Yu.N.Budyka A.K.Kirichenko V.N. Electrospinning of micro- and nanofibers and their application in filtration and separation processes. N. Y., 2007. 488 р.                                                                                              
Received: 
19.04.2010
Accepted: 
19.03.2010
Published: 
19.02.2011
Short text (in English):
(downloads: 47)