Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Basalaeva D. L., Nikelshparg M. I., Yevstigneyeva S. S., Glinskaya E. V. Antagonistic activity of Bacillus velezensis. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 1, pp. 57-63. DOI: 10.18500/1816-9775-2022-22-1-57-63

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 49)
Article type: 

Antagonistic activity of Bacillus velezensis

Basalaeva Daria L., Saratov State University
Nikelshparg Matvey I., МАОУ «Гимназия № 3»
Yevstigneyeva Stella S., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Glinskaya Elena Vladimirovna, Saratov State University

A large number of synthetic pesticides have been developed to combat phytopathogenic bacteria and fungi, but their use is economically unprofi table and harms the environment. The aim of this study was to evaluate the antagonistic properties of Bacillus velezensis HR13 bacteria in relation to cultures of phytopathogenic bacteria and fungi, as well as the ability to produce cyclic lipopeptides, which have antimicrobial activity. It is shown that strain B. velezensis HR13 has a pronounced antagonistic eff ect against fungi that cause plant infections: Absidia corymbifera, Aspergillus fl avus, A. niger, A. tubingensis, Fusarium oxysporum, F. equiseti, Phoma fungicola, Rhizopus sp. The strain B. velezensis HR13 does not show antagonism to phytopathogenic gram-negative bacteria of the genus Pseudomonas. A preparation of cyclic lipopeptide surfactin was obtained by thin-layer chromatography and Fourier-transform infrared spectroscopy.

  1. Teixiera G. M., Mosela M., Nicoletto M. L. A., Ribeiro R. A., Hungria A. S., Goncales L. S. A., Pereira U. P., Oliveira A. G. de. Genomic insight into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490. Front Microbiol., 2021, no. 11, pp. 1–14. https://doi.org/10.3389/fmicb.2020.618415
  2. Roh J. Y., Liu Q., Choi J. Y., Wang Y., Shim H. J., Xu H. G., Choi G. J., Kim J. C., Je Y. H. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. J. Microbiol. Biotechnol., 2009, no. 19 (10), pp. 1223–1229. https://doi.org/10.4014/jmb.0902.065
  3. Lim S. M., Yoon M. Y., Choi G. J., Choi Y. H., Jang K. S., Shin T. S., Park H. W., Yu N. H., Kim Y. H., Kim J. C. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J., 2017, no. 33 (5), pp. 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073
  4. Idiyatov I. I., Valiullin L. R., Gallyamova S. R., Biryulya V. V., Nikitin A. I. Antifungal activity of Fusarium sporotrichioides antagonists. Agrarnyi vestnik Urala, 2018, no. 3 (170), pp. 10–20 (in Russian).
  5. Romero D., Vincente A. de, Rakotoaly R. H., Dufour S. E., Veening J. W., Arrebola E., Carorla F. M., Kuipers O. P., Paquot M., Pérez-García A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact., 2007, no. 20, pp. 430–440. https://doi.org/10.1094/MPMI-20-4-0430
  6. Ongena M., Jasques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol., 2008, no. 16 (3), pp. 115–125. https://doi.org/10.1016/j.tim.2007.12.009
  7. Melent’ev A. I., Kuz’mina L. Iu., Kurchenko V. P. Cyclic lipopeptides are a promising biotechnological product. In: Prospects and problems of biotechnology development within the common econimic spase of the Commonwealth countries: materials of the sci. conf. Minsk, RIVSh Publ., pp. 140–141 (in Russian).
  8. Basalaeva D. L., Shestakova A. S., Nikelshparg M. I., Glin skaya E. V. The antagonistic properties of Bacillus vаlezensis. In: Zhivyye sistemy – 2019: sbornik nauchnykh statey [Living systems – 2019: collection of scientifi c articles]. Saratov, Amirit Publ., 2019, pp. 171–173 (in Russian).
  9. Irkitova A. N., Kagan Ja. R., Sokolova G. G. Comparative analysis of the methods to defi ne antagonistic activity of lactic bacteria. Izvestiia Altai State University, 2012, no. 3-1 (75), pp. 41–44 (in Russian).
  10. Chen L., Chong X. Y., Zhang Y. Y., Lv Y. Y., Hu Y. S. Genome shuffl ing of Bacillus velezensis for enhanced surfactin production and variation analysis. Curr. Microbiol., 2020, no. 77 (1), pp. 71–78. https://doi.org/10.1007/s00284-019-01807-4
  11. Yakovleva O. V. Aerobic spore-forming bacteria of the genus Bacillus Cohn producers of surfactants. Diss. Cand. Sci. (Biol.). Ufa, 2004. 117 p. (in Russian).
  12. Gindullina T. M., Dubova D. M. Khromatografi cheskie metody analiza [Chromatographic methods of analysis]. Tomsk, Izdatel’stvo Tomskogo politekhnicheskogo universiteta, 2010. 80 p. (in Russian).
  13. Basalaeva D. L., Evstigneeva S. S., Nikelshparg M. I., Glinskaya E. V. Bacillus velezensis – is a promising agent in the fight against plant pathogens. In: Issledovaniia molodykh uchenykh v biologii i ekologii – 2021: sbornik nauchnykh statei [Research of young scientists in biology and ecology – 2021: collection of scientifi c articles]. Saratov, Amirit Publ., 2021, pp. 32–33 (in Russian).
  14. Adeniji A. A., Aremu O. S., Babalola O. O. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS 10.5. Microbiology Open, 2019, no. 8 (6), pp. 1–21. https://doi.org/10.1002/mbo3.742