Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 83)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
543.054

Synthesis of Monodisperse Magnetite: The Effect of Temperature, Sodium Hydroxide and Citric Acid Concentrations on the Size of Nanoparticles

Autors: 
Egunova Olga Romanovna, Saratov State University
German Sergey Viktorovich, Saratov State University
Shtykov Sergey N., Saratov State University
Vrabie Y. A., Saratov State University
Abstract: 

The effect of temperature, sodium hydroxide and citric acid concentrations on the size of magnetic magnetite nanoparticles was studied. Optimal conditions for synthesis of magnetite stabilized by citric acid with narrow size distribution were found. The average size of the nanoparticles determined by dynamic light scattering and transmission electron microscopy 12 ± 3 and 6 ± 2 nm, respectively was established. The chemical composition and structure of magnetite nanoparticles was confirmed by X-ray diffraction method.

Reference: 

1. Sandhu A., Handa H., Abe M. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics // Nanotechnology. 2010. Vol. 21. P. 442001- 442023.

2. Ambashta R. D., Sillanpaa M. Water purification using magnetic assistance : A review // J. Hazard. Mater. 2010. Vol. 180. P. 38–49. 

3. Giakisikli G., Anthemidis A. N. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review // Anal. Chim. Acta. 2013. Vol. 789. P. 1–16.

4. Xie L., Jiang R., Zhu F., Liu H., Ouyang G. Application of functionalized magnetic nanoparticles in sample preparation // Anal. Bioanal. Chem. 2014. Vol. 406. P. 377–399.

5. Dios A. S. de, Diaz-Garcia M. E. Multifunctional nanoparticles : Analytical prospects // Anal. Chim. Acta. 2010. Vol. 666. P. 1–22.

6. R?os A., Zougagh M., Bouri M. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review // Anal. Methods. 2013. Vol. 15. P. 23–32. 

7. Chen L., Wang T., Tong J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples // Trends Anal. Chem. 2011. Vol. 30, № 7. P. 1095–1108.

8. Aguilar-Arteaga K., Rodriguez J.A., Barrado E. Magnetic solids in analytical chemistry : A review // Anal. Chim. Acta. 2010. Vol. 674. P. 157–165.

9. Zhao X., Shi Y., Wang T., Cai Y., Jiang G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples // J. Chromatogr. A. 2008. Vol. 1188. P. 140–147. 

10. Erdem A., Sayar F., Karadeniz H., Guven G., Ozsoz M., Piskin E. Development of Streptavidin Carrying Magnetic Nanoparticles and Their Applications in Electrochemical Nucleic Acid Sensor Systems // Electroanalysis. 2007. Vol. 19. P. 798–804.

11. Li J., Wei X., Yuan Y. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor // Sensors Actuators B. 2009. Vol. 139. P. 400–406

12. Liu Z., Liu Y., Yang H., Yang Y., Shen G., Yu R. A phenol biosensor based on immobilizing tyrosinase to modifi ed core–shell magnetic nanoparticles supported at a carbon paste electrode // Anal. Chim. Acta. 2005. Vol. 533. P. 3–9.

13. Dieny B. Giant magnetoresistance in spin-valve multilayers // J. Magn. Magn. Mater. 1994. Vol. 136. P. 335–359.

14. Awschalom D. D., Samarth N. Spin dynamics and quantum transport in magnetic semiconductor quantum structures // J. Magn. Magn. Mater. 1999. Vol. 200. P. 130–147.

15. Ohno H. Making Nonmagnetic Semiconductors Ferromagnetic // Science. 1998. Vol. 281. P. 951–956.

16. Zutic I., Fabian J., Sarma S.D. Spintronics : Fundamentals and applications // Rev. Mod. Phys. 2004. Vol. 76. P. 323–410. 

17. Slaughter J. M., Dave R. W., De Herrera M., Durlam M., Engel B. N., Janesky J., Rizzo N. D., Tehrani S. Fundamentals of MRAM Technology // J. Supercond. 2002. Vol. 15. P. 19–25.

18. Wilhelm C., Gazeau F. Universal cell labelling with anionic magnetic nanoparticles // Biomaterials. 2008. Vol. 29. P. 3161–3174

19. Liu X. Q., Xing J. M., Guan Y. P., Shan G. B., Liu H. Z. Synthesis of amino-silane modifi ed superparamagnetic silica supports and their use for protein immobilization // Colloids Surfaces A : Physicochem. Eng. Aspects. 2004. Vol. 238. P. 127–131.

20. Hiergeist R., Andra W., Buske N., Hergt R., Hilger I., Richter U., Kaiser W. Application of magnetite ferro- fl uids for hyperthermia // J. Magn. Magn. Mater. 1999. Vol. 201. P. 420–422.

21. Astalan A. P., Ahrentorp F., Johansson C., Larsson K., Krozer A. Biomolecular reactions studied using changes in brownian rotation dynamics of magnetic particles // Biosensors Bioelectron. 2004. Vol. 19. P. 945–951.

22. Liu T. Y., Hu S. H., Liu K. H., Liu D. M., Chen S. Y. Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA // J. Control. Release. 2008. Vol. 126. P. 228–236.

23. Chan D. C. F., Kirpotin D. B., Bunn P. A. Synthesis and evaluation of colloidal magnetic iron oxides for the site specifi c radiofrequency-induced hyperthermia of cancer // J. Magn. Magn. Mater. 1993. Vol. 122. P. 374–378.

24. Jin H., Kang K. A. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer // Adv. Exp. Med. Biol. 2007. Vol. 599. P. 45–52.

25. Medeirosa S. F., Santos A. M., Fessi H., Elaissari A. Stimuli-responsive magnetic particles for biomedical applications // Intern. J. Pharmaceut. 2011. Vol. 403. P. 139–161.

26. Егунова О. Р., Константинова Т. А., Штыков С. Н. Магнитные наночастицы в разделении и концен- трировании // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2014. Т. 14, вып. 4. С. 27–35.

27. Chen F., Zhao T., Chen Q., Han L., Fang Sh., Chen Z. Size-controlled monodisperse hydrophobic and hydrophilic magnetite nanoparticles : One-pot synthesis, characterization, and the mechanism study // Mater. Res. Bull. 2013. Vol. 48. P. 4093–4099.

Received: 
22.11.2015
Accepted: 
22.11.2015
Published: 
22.12.2015