Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Sheviakhova A. V., Nesterova A. Y., Il’in K. K., Cherkasov D. G. Phase behavior and solubility of components of the binary butyric acid – polyethylene glycol-1500 system. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 1, pp. 28-34. DOI: 10.18500/1816-9775-2024-24-1-28-34, EDN: NXSGBR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 20)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.344.016+536.445:544.344.013-16-14+66.061
EDN: 
NXSGBR

Phase behavior and solubility of components of the binary butyric acid – polyethylene glycol-1500 system

Autors: 
Abstract: 

A critical review of the literature on the methods of concentration and extraction of biobutyric acid from fermentation solutions has been carried out. The best results of these processes are achieved by combining extraction with salting. It is proposed to use polyethylene glycols with diff erent molecular weights as non-fl ammable and environmentally friendly extractants. The purpose of the study was to identify the phase behavior of mixtures of components, study solubility and construct a phase diagram of the previously unexplored double system butyric acid – PEG-1500 in the range −10.0–50.0°C. The transition temperatures of phase states in mixtures of components of the dual system butyric acid (BA) – polyethylene glycol-1500 (PEG-1500) in the temperature range −10–50°C have been found by the visual-polythermal method. The phase diagram above the eutectic line shows a large crystallization fi eld of PEG-1500, while the crystallization fi eld of BA has very small dimensions. It has been established for the fi rst time that eutectic equilibrium is carried out in the system at −6.6°C, the solid phases of which are crystals of BA and PEG-1500, the composition of the liquid phase of eutectic (3.20 wt.% BA) has been determined. A method for concentrating BA and separating the components of the investigated system based on the crystallization of PEG-1500 during cooling of mixtures is proposed.

Reference: 
  1. Jha A. K., Li J., Yuan Y., Baral N., Ai B. A review on bio-butyric acid production and its optimization // Int. J. Agric. Biol. 2014. Vol. 16, № 5. P. 1019–1024.
  2. Dwidar M., Park J.-Y., Mitchell R. J., Sang B.-I. The future of butyric acid in industry // The Scient World J. 2012. ID 471417. P. 1–10. https://doi.org/10.1100/2012/471417
  3. Химическая энциклопедия : в 5 т. / гл. ред. И. Л. Кнунянц. М. : Советская энциклопедия, 1988–1998.
  4. Jiang L., Fu H., Yang H. K., Xu W., Wang J., Yang S.-T. Butyric acid: Applications and recent advances in its bioproduction // Biotechnol. Adv. 2018. Vol. 36, № 8. P. 2101–2117. https://doi.org/10.1016/j.biotechadv.2018.09.005
  5. Özcelik S., Kuley E., Özogul F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria // LWT. 2016. Vol. 73. P. 536–542. https://doi.org/10.1016/j.lwt.2016.06.066 
  6. Luo H., Yang R., Zhao Y., Wang Z., Liu Z., Huang M., Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation // Bioresour. Technol. 2018. Vol. 253. P. 343–354. https://doi.org/10.1016/j.biortech.2018.01.007
  7. Zhang C., Yang H., Yang F., Ma Y. Current progress on butyric acid production by fermentation // Curr. Microbiol. 2009. Vol. 59, № 6. P. 656–663. https://doi. org/10.1007/s00284-009-9491-y
  8. Suo Y., Ren M., Yang X., Liao Z., Fu H., Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/ acetate ratio // Appl. Microbiol. Biotechnol. 2018. Vol. 102, № 10. P. 4511–4522. https://doi.org/10.1007/ s00253-018-8954-0
  9. Stein U. H., Wimmer B., Ortner M., Fuchs W., Bochmann G. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation // Sci. Total Environ. 2017. Vol. 598. P. 993–1000. https:// doi.org/10.1016/j.scitotenv.2017.04.139
  10. He F., Qin S., Yang Z., Bai X., Suo Y., Wang J. Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes // Bioresour. Technol. 2020. Vol. 304. Article 122977. https://doi.org/10.1016/j. biortech.2020.122977
  11. Fu H., Wang X., Sun Y., Yan L., Shen J., Wang J., Yang S.-T., Xiu Z. Effects of salting-out and saltingout extraction on the separation of butyric acid // Sep. Purif. Technol. 2017. Vol. 180. P. 44–50. https://doi. org/10.1016/j.seppur.2017.02.042
  12. Dan W., Hao C., Ling J., Jin C., Zhinan X., Peilin C. Effi - cient separation of butyric acid by an aqueous two-phase system with calcium chloride // Chin. J. Chem. Eng. 2010. Vol. 18, № 4. P. 533–537. https://doi.org/10.1016/ S1004-9541(10)60255-8
  13. Dessì P., Asunis F., Ravishankar H., Cocco F. G., De Gioannis G., Muntoni A., Lens P. N. L. Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction // Int. J. Hydrogen Energy. 2020. Vol. 45, № 46. P. 24453–24466. https://doi.org/10.1016/j.ijhydene.2020. 06.081
  14. Marták J., Schlosser Š. Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid // J. Chem. Eng. Data. 2017. Vol. 62, № 10. P. 3025–3035. https://doi.org/10.1021/acs.jced.7b00039
  15. Oh H. W., Lee S. C., Woo H. C., Kim Y. H. Energyeffi cient recovery of fermented butyric acid using octyl acetate extraction // Biotechnol. Biofuels Bioprod. 2022. Vol. 15. Article 46. https://doi.org/10.1186/s13068-022- 02146-6
  16. Mukherjee S., Negi D., Nagraj M. S., Munshi B. Reactive extraction of butyric acid from water using trioctyl amine in 1-decanol and green natural oils // J. Chem. Eng. Data. 2021. Vol. 66, № 7. P. 2733–2753. https:// doi.org/10.1021/acs.jced.1c00122
  17. Bilgin M., Arısoy C., Kırbaşlar S. I. Extraction equilibria of propionic and butyric acids with tri-n-octylphosphine oxide/diluent systems // J. Chem. Eng. Data. 2009. Vol. 54, № 11. P. 3008–3013. https://doi.org/ 10.1021/ je900063p
  18. Zakhodyaeva Y. A., Voshkin A. A., Belova V. V., Khol’- kin A. I. Extraction of monocarboxylic acids with binary extracting agents based on amines and quaternary ammonium bases // Theor. Found. Chem. Eng. 2011. Vol. 45, № 5. P. 739–743. https://doi.org/10.1134/S0040579511050186
  19. Zakhodyaeva Y. A., Voshkin A. A., Belova V. V., Khol’- kin A. I. Extraction of monocarboxylic acids by trioctylmethylammonium di(2-ethylhexyl)phosphate // Theor. Found. Chem. Eng. 2012. Vol. 46, № 4. P. 413–418. https://doi.org/10.1134/S0040579512040094
  20. Yan L., Sun Y.-Q., Wang X.-D., Fu H.-X., Mu Y., Xiu Z.-L. Partition behavior of monocarboxylic acids in salting-out extraction systems of monohydric alcohols and dipotassium phosphate // Sep. Purif. Technol. 2018. Vol. 199. P. 351–358. https://doi.org/10.1016/j. seppur.2018.02.006
  21. Li Z., Yan L., Zhou J., Wang X., Sun Y., Xiu Z.-L. Twostep salting-out extraction of 1,3-propanediol, butyric acid and acetic acid from fermentation broths // Sep. Purif. Technol. 2019. Vol. 209. P. 246–253. https://doi. org/10.1016/j.seppur.2018.07.021
  22. Wu X., Li G., Yang H., Zhou H. Study on extraction and separation of butyric acid from clostridium tyrobutyricum fermentation broth in PEG/Na2SO4 aqueous two-phase system // Fluid Phase Equilib. 2015. Vol. 403. P. 36–42. https://doi.org/10.1016/j. fluid.2015.05.047
  23. Zinov’eva I. V., Zakhodyaeva Yu. A., Voshkin A. A. Extraction of monocarboxylic acids from diluted solutions with polyethylene glycol // Theor. Found. Chem. Eng. 2019. Vol. 53, № 5. P. 871–874. https://doi.org/10.1134/ S0040579519050257
  24. Ильин К. К., Черкасов Д. Г. Топология фазовых диаграмм тройных систем соль–два растворителя с всаливанием–высаливанием. Саратов : Изд-во Сарат. ун-та, 2020. 212 с.
Received: 
18.09.2023
Accepted: 
27.09.2023
Published: 
29.03.2024
Short text (in English):
(downloads: 20)