

- ционных заболеваний и отравлений / Древко Б. И., Древко Р. И., Антипов В. А., Чернуха Б. А., Яковлев А. Н. ; опубл. 27.07.2001. 16 с. // Изобретения. Полезные модели. Бюл. № 21(II ч.). С. 219.
- 7. Методы экспериментальной микологии / под ред. В. И. Билай. Киев: Наук. думка, 1982. 550 с.
- 8. *Бухало А. С.* Высшие съедобные базидиомицеты в чистой культуре. Киев: Наук. думка, 1988. 144 с.
- 9. Feigl F., West P. W. Test for Selenium Based on a Catalytic Effect // Anal. Chem. 1947. Vol. 19, № 5. P. 351–353.
- 10. *Назаренко И. И., Ермаков А. Н.* Аналитическая химия селена и теллура. М.: Наука, 1971. 251 с.

УДК 546.571-386:615.331

КОМПЛЕКСООБРАЗОВАНИЕ СЕРЕБРА (I) С АМПИЦИЛЛИНОМ, ОКСАЦИЛЛИНОМ, ЦЕФАЗОЛИНОМ И ЦЕФОТАКСИМОМ В ВОДНЫХ РАСТВОРАХ

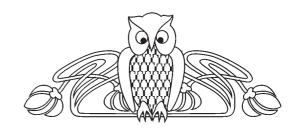
С. В. Снесарев, Е. Г. Кулапина

Саратовский государственный университет E-mail: snesarevsv@rambler.ru

Спектрофотометрическим и рН-потенциометрическим методами в водном растворе на нитратном фоне (KNO $_3$, $\mu=0.1$, $t=20\pm2$ °C) изучены комплексные соединения серебра (I) с ампициллином, оксациллином, цефазолином и цефотаксимом. Установлены области рН формирования и существования комплексов при заданных концентрациях серебра(I) и лиганда, их мольный состав. Показано преимущество образования [AgL $_2$] ткомплексов при изменении рН среды; рассчитаны константы устойчивости комплексов. Определены константы диссоциации ряда β -лактамных антибиотиков.

Ключевые слова: серебро(I), β-лактамные антибиотики, комплексные соединения, константы устойчивости, спектрофотометрия, рН-потенциометрия.

Complexes of Silver (I) with Ampicillin, Oxacillin, Cefazolin and Cefotaxime in Aqueous Solutions


S. V. Snesarev, E. G. Kulapina

Spectrophotometric and pH-potentiometric methods in an aqueous solution of nitrate on the background (KNO $_3$, $\mu=0.1$, $t=20\pm2$ °C) studied complex compounds of silver (I) with ampicillin, oxacillin, cefazolin and cefotaxime. Set the pH of formation and existence of the complexes at a given concentration of silver (I) and the ligand, their molar composition. The advantage of the education [AgL $_2$] $^-$ complexes when the pH of the medium, calculated the stability constants of complexes. Determined the dissociation constants of some β -lactam antibiotics.

Key words: silver (I), β -lactam antibiotics, complex compounds, stability constants, spectrophotometry, pH-potentiometry.

Введение

Пенициллины и цефалоспорины – две обширные, химически родственные группы антибиотиков. Молекулы всех пенициллинов и цефалоспоринов содержат четырехчленный β -лактамный цикл, вследствие чего эти соединения относят к классу β -лактамных антибиотиков [1,2].

В структуре таких антибиотиков можно выделить карбоксильную, аминную, амидную, лактамную и тиазолидиновую группы, которые могут участвовать в процессе комплексообразования с катионами металлов (табл. 1).

Имеются многочисленные данные по комплексообразованию β-лактамных антибиотиков с катионами d-металлов Zn(II), Fe (III), La(III), Cd(II), Ni(II), Mn(II), Cu(II), Co(II), Pd(II). Обнаружены моноядерные комплексы мольного состава 1:1, 1:2, реже 1:3, например, CuL⁺, CuL, NiL⁺, NdL₂⁺, CdL⁺, CdL и др. [3]. В свою очередь, в литературе имеются единичные работы по комплексообразованию β-лактамных антибиотиков с катионом серебра (I). Последний имеет крупный размер, что сказывается на способе координации молекул антибиотиков и возможности образования отрицательно заряженных комплексов. Последние могут быть использованы в составе электродно-активных веществ мембран потенциометрических сенсоров, чувствительных к β-лактамным антибиотикам [4].

Целью данной работы является установление состава и констант устойчивости комплексов серебра(I) с ампициллином, оксациллином, цефазолином и цефотаксимом.

Материалы и методика исследования

Исследования проводили спектрофотометрическим и рН-потенциометрическим методами. Оптическую плотность растворов измеряли на спектрофотометре Shimadzu UV-1800 с использованием кюветы с кварцевыми стеклами с толщиной поглощающего слоя 1 см. Относительная погрешность определения оптической плотно-

 ${\it Tаблица~1}$ Названия и формулы исследуемых β -лактамных антибиотиков

Наименование	Сокращение	Формула
Ампициллин	Am	H ₂ N CH H S CH ₃ CH ₃ CH ₃ CH ₃ O H OH
Оксациллин	Ox	H ₃ C O NH S CH ₃ CH ₃ CH ₃ O O O O O O O O O O O O O O O O O O O
Цефазолин	Cef	N H S CH ₃ CH ₂ H _{1,1,1} O HO O HO
Цефотаксим	Ceftx	OCH ₃ NH ₂ OCH ₂ OCH ₃ OCH

сти рассчитывалась по формуле $D = 0,4343/(A \times \times 10^{-4})$ %. Длины волн устанавливали в области 190—320 нм с погрешностью $\pm 0,1$ нм. В качестве раствора сравнения использовали дистиллированную воду. Контроль pH растворов проводили на pH метре pX - 150 мП с помощью стеклянного электрода ЭСЛ-63-07. В качестве электрода сравнения использовали хлоридсеребряный электрод ЭВЛ-1МЗ. Прибор калибровали при помощи стандартных буферных растворов. Измерения проводились при $t = 20 \pm 2$ °C. Требуемое значение pH растворов создавали растворами NaOH

и HNO $_3$ марки «ч.д.а.». Постоянство ионной силы ($\mu\approx0,1$) поддерживалось раствором KNO $_3$ («ч.д.а.»). Раствор нитрата серебра (I) готовили растворением навески нитрата серебра (I) марки «х.ч.» в дистиллированной воде, растворы ампициллина, оксациллина, цефазолина и цефотаксима — растворением точной навески препаратов фармакопейной чистоты в дистиллированной воде. Раствор NaOH для титрования, практически не содержащий карбоната натрия, готовили по методике [5]. Математическую обработку кривых проводили по методу наименьших квадратов с

18 Научный отдел

использованием специальной программы для моделирования равновесий в растворах «Равновесия v1.00 KCMSoft» [6].

Для проведения исследования комплексообразования потенциометрическим методом кислые растворы, содержащие нитрат серебра с концентрацией 2·10-3 моль/л и антибиотик с концентрацией 1 г/л в форме катиона (H_2L^+) в мольном соотношении 1:3 на фоне 0,1 M KNO₃, титровали раствором NaOH, измеряя при этом рН. Растворы для титрования готовили непосредственно перед экспериментом. В мерную колбу на 500 мл вносили 0,5 г антибиотика, 50 мл 1 М KNO₃ для создания ионной силы 0,1 и 14 мл 0,1 М HNO₃ для перевода антибиотика в протонированную форму [7]. Растворяли антибиотик и доводили раствор до метки. Отбирали 100 мл полученного таким образом раствора и помещали в электрохимическую ячейку, добавляли 5 мл раствора AgNO₃ и титровали раствором NaOH.

Для проведения исследования комплексообразования спектрофотометрическим методом в шесть мерных колб, емкостью 25 мл добавляли 5 мл ацетатно-аммиачного буферного раствора для создания среды с рН 8,1, 1 мл $1\cdot10^{-4}$ М нитрата серебра, а затем различные объемы соответствующего антибиотика и доводили до метки дистиллированной водой. Раствором сравнения являлся раствор антибиотика при рН = 8,1.

Результаты и их обсуждение

Исследование процессов комплексообразования серебра(I) с ампициллином, оксациллином, цефазолином и цефотаксимом проводились рН-потенциометрическим и спектрофотометрическим методами.

Поскольку константы диссоциации исследуемых в настоящей работы β-лактамных антибиотиков у разных авторов различны, нами определены константы при вышеприведенных соответствующих условиях (табл. 2).

Как видно из рис. 1, первый скачок титрования приходится на область рН 4,2-5,8 — это может быть связано с протеканием реакции $Ag^+ + L^- \leftrightarrow AgL$ с образованием соединения стехиометрического состава 1:1. Второй скачок титрования приходится на область рН 8,1-9,5, что указывает на протекание конкурирующей реакции $Ag^+ + 2L^- \leftrightarrow [AgL]_2^-$.

Учитывая это, была проведена математическая обработка данных кривых титрования. Установлено, что при исключении из расчетов образования соединений $[\mathrm{AgL}_2]^-$, так же как и введение $[\mathrm{AgL}_3]^{2-}$, приводит к ухудшению соответствия модели экспериментальным данным.

Таблица 2 Константы диссоциации ампициллина, оксациллина, цефазолина и цефотаксима ($C_{aut}=0.1~M, \mu=0.1, KNO_3, t=25\pm2^{\circ}C, n=3, P=0.95$)

		-			
		Литературные данные			
Антибиотик	pK	pK	M	t,°C	Источ- ник
		$pK_1 = 2,39$ $pK_2 = 6,86$	0,1	25	[9]
Ампициллин	$pK_1 = 2,4 \pm 0,1$ $pK_2 = 6,9 \pm 0,2$		0,5	37	[10]
		$pK_1 = 2,50$ $pK_2 = 7,05$	0,1	37	[11]
	$pK = 2.7 \pm 0.1$	pK = 2,69	0,1	20	[10]
Оксациллин		pK = 2,73	0,15	37	[11]
11-4	16 27 101	pK = 2,67	1,0	20	[10]
Цефазолин	$pK = 2.7 \pm 0.1$	pK = 2,75	0,5	25	[12]
		$pK_1 = 2,30$ $pK_2 = 3,1$	0,1	20	[11]
Цефотаксим	$pK_1 = 1,9 \pm 0,2$ $pK_2 = 3,2 \pm 0,1$ $pK_3 = 10,5 \pm 0,2$	$pK_{2} = 7,65$	0,2	25	[14]
		$pK_1 = 2,21$ $pK_2 = 3,15$	0,2	25	[15]

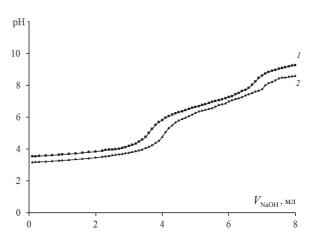


Рис.1. Кривые рН-метрического титрования растворов оксациллина (I) и системы оксациллин—серебро (2) 0,05 M раствором NaOH

Известно, что для комплексов вида $[{\rm AgL}_2]^-$ энергия систем, состоящих из одного иона серебра и одного иона одновалентного лиганда, равна $-e^2/r$, где e — заряд электрона, а r — радиус ионов. Для двух ионов лиганда энергия притяжения равна $-2e^2/r$, а энергия расталкивания их — $e^2/2r$, так что суммарная энергия системы из двух ионов лиганда равна $-1,5e^2/r$. Очевидно, что молекула AgL обладает большей потенциальной энергией, чем ион $[{\rm AgL}_2]^-$, поэтому образование комплекса $[{\rm AgL}_2]^-$ энергетически более выгодно [8].

Таким образом, потенциометрическим методом установлено, что в слабокислой среде Am-, Ox-, Cef- и Ceftx образуют комплексы стехиометрического состава 1:1, в условиях щелочной

Xnmns 19

среды эти же антибиотики взаимодействуют с серебром (I) с образованием билигандных заряженных комплексов.

По данным pH-метрического метода исследования комплексообразования в системе серебро(I)- β -лактамный антибиотик установлены области образования комплексов: AgL-pH 4,2–5,8; [AgL₂]⁻ – pH 8,1–9,5. Спектрофотометрическое исследование комплексообразования серебра с некоторыми β -лактамными антибиотиками проведено в области pH 8,1–9,5. Показано, что оптическая плотность комплексов [AgL₂]⁻ достигает максимального значения через 3 мин; система устойчива в течение 30 мин (рис. 2).

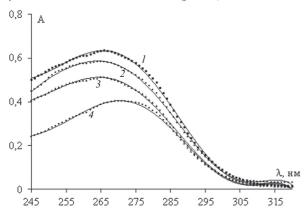


Рис. 2. Спектры светопоглощения комплексных соединений серебра с — ампициллином (1), оксациллином (2), цефотаксимом (3); цефазолином (4); $C_{\rm aht.}=5\cdot 10^{-4}~{\rm M},$ $C_{\rm Ag+}=2,5\cdot 10^{-4}~{\rm M},$ pH = 8,1

Мольное отношение серебра (I) и антибиотиков в комплексе устанавливали методом насыщения [8]. Для определения состава комплекса готовили серию растворов с переменной концентрацией натриевых солей β -лактамных антибиотиков и постоянной концентрацией ионов серебра $1\cdot 10^{-4}\,\mathrm{M}$.

На рис. 3 в качестве примера представлена кривая насыщения зависимости A – концентрация цефотаксима. Из рис. 3 видно, что на кривой насыщения имеется точка перегиба, соответствующая составу комплекса (Ag^+ : β -lac) 2:1.

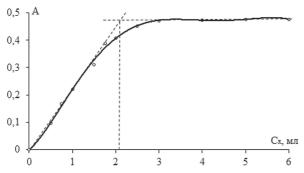


Рис. 3. Кривая насыщения для определения состава комплекса серебро–цефотаксим $C_{Ag} = C_{Ceftx} = 1 \cdot 10^{-4} \, \mathrm{M}$

Рассчитанные константы устойчивости комплексов серебра (I) и ампициллина, оксациллина, цефазолина и цефотаксима представлены в табл.3.

Таблииа 3

Константы устойчивости комплексов серебра(I) с ампициллином, оксациллином, цефазолином и цефотаксимом ($\mu=0.1$, KNO₃, $t=25\pm2$ °C, n=3, P=0.95)

Комплекс	lgβ			
ROMILIERC	рН-потенциометрия	спектрофотометрия		
AgAm	$3,42 \pm 0,02$	_		
AgOx	$3,28 \pm 0,03$	-		
AgCef	$4,41 \pm 0,03$	_		
AgCeftx	$4,14 \pm 0,05$	_		
$[AgAm_2]^-$	$6,28 \pm 0,05$	$6,36 \pm 0,07$		
$[AgOx_2]^-$	$6,22 \pm 0,04$	$6,16 \pm 0,03$		
[AgCef ₂] ⁻	$7,56 \pm 0,03$	$7,58 \pm 0,05$		
[AgCeftx ₂] ⁻	$7,35 \pm 0,04$	$7,27 \pm 0,06$		

Таким образом, ионы серебра (I) с исследуемыми β -лактамными антибиотиками образуют комплексы двух видов $AgLu [AgL_2]^-$. Образование отрицательно заряженного комплекса энергетически более выгодно, что согласуется с литературными данными, например, для ампициллина [7].

Из литературы известно, что анионы аминокислот в комплексах с серебром (I) образуют координационные связи через аминогруппу как монодентатные лиганды, а устойчивость образующихся комплексов прямо пропорциональна основности аминогрупп [7]. Основность β-лактамных антибиотиков существенно ниже, чем аминокислот, но исследованные комплексы серебра (I) с ампициллином, оксациллином, цефазолином, цефотаксимом и соответствующие комплексы аминокислот равны по устойчивости. Тот же порядок имеют константы устойчивости комплексов β-лактамных антибиотиков и с катионами двухвалентных д-элементов, в которых анионы антибиотиков проявляют себя как би- или тридентатные [16]. Можно сделать вывод, что ампициллин, оксациллин, цефазолин и цефотаксим координируются ионом серебра (I) как бидентатные лиганды, и это является дополнительным фактором, стабилизирующим данные комплексы.

Список литературы

- Лоу Г. Антибиотики с β-лактамной группировкой / Общая органическая химия : в 12 т. М., 1983. Т. 10. С. 336–368.
- 2. Солдатенков А. Т., Колядина Н. М., Шендрик И. В. Основы органической химии лекарственных веществ. 2-е изд. М., 2003. 191 с.
- 3. *Алексеев В. Г.* Бионеорганическая химия пенициллинов и цефалоспоринов. Тверь, 2009. 104 с.
- 4. *Кулапина Е. Г., Снесарев С. В.* Потенциометрические сенсоры на основе органических ионообменников

20 Научный отдел

- тетраалкиламмония и комплексов серебра (I) с ампициллином, оксациллином и цефазолином // Журн. аналит. хим. 2011. Т. 66, № 12. С. 17.
- Карякин Ю. В., Ангелов И. И. Чистые химические вещества. 4-е изд., перераб. и доп. М., 1974. 408 с.
- 6. «Равновесия v1.00 KCMSoft» программа для расчета равновесий в водных растворах. URL: http://sinisha.chat.ru (дата обращения: 20.12.2011).
- 7. Алексеев В. Г., Демская Л. В. Комплексообразование серебра(I) с ампициллином, амоксициллином и цефалексином // Коорд. химия. 2007. Т. 33, № 3. С. 211–215.
- 8. *Лебедева Л. И*. Комплексообразование в аналитической химии: учеб. пособие / под ред. И. В. Пятницкого. Л., 1985. 174 с.
- 9. Zaworotko M. J., Hammud H. H. Ampicillin acidity and formation constants with some metals and their thermodynamic parameters in different media // J. Coord. Chem. 2006. Vol. 59, № 1. P. 65–84.
- 10. Алексеев В. Г., Демская Е. В., Додонова М. С. Термодинамические константы пенициллинов и цефалоспоринов // Журн. общ. хим. 2005. Т. 75, № 6. С. 1049–1054.

- 11. *Mukherjee G., Ghosh T.* Metal ion interaction with penicillins Part VII: Mixed-ligand complex formation of cobalt(II), nickel(II), copper(II), and Zinc(II) with ampicillin and nucleic bases // J. Inorg. Biochem. 1995. Vol. 59. P. 827–833.
- 12. Алексеев В. Г., Даландуцкая В. С., Маркелова С. В., Авилкина А. А. Кислотно-основные свойства цефалотина, цефазолина и цефалексина // Журн. общ. хим. 2005. Т. 75, № 8. С. 1349–1352.
- 13. *Алексеев В. Г., Демская Е. В., Милаше Е. А., Игол-кин В. В.* Кислотно-основные свойства амоксициллина // Журн. общ. хим. 2005. Т. 75, № 7. С. 1211–1214.
- 14. Alekscic M., Savic V., Popovic G., Buric N., Kapetanovic V. Acidity constants of cefetamet, cefotaxime and ceftriaxone; the effect of the substituent at C3 position // J. Pharm. Biomed. Analysis. 2005. Vol. 39, № 3–4. P. 752–756.
- 15. Алексеев В. Г., Воробьев Н. В., Якубович Ю. Я. Кислотно-основные равновесия в растворах цефотаксима и цефтриаксона // Журн. физ. химии. 2006. Т. 80, № 9. С. 1615–1619.
- 16. Gutierrez N. P., Martinez P. P. J., Marquez G. A. Process studying complexes amino acids with some transition metals. A structure and properties // J. Pharm. Sci. 1991. Vol. 80, № 9. P. 904–908.

УДК 539.193/.194;535/33.34

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ПАРАМЕТРОВ АДИАБАТИЧЕСКОГО ПОТЕНЦИАЛА МОНОМЕРА И ДИМЕРОВ САЛИЦИЛОВОЙ КИСЛОТЫ

М. Д. Элькин¹, А. Н. Панкратов¹, А. Р. Гайсина²

¹Саратовский государственный университет E-mail: elkinmd@mail.ru. E-mail: PankratovAN@info.sgu.ru ²Астраханский государственный университет E-mail: gaisinaalfiya@mail.ru

На основании квантовохимических DFT-расчетов параметров адиабатического потенциала салициловой кислоты предложены структурно-динамические модели ее мономера и димеров.

Ключевые слова: салициловая кислота, адиабатический потенциал, межмолекулярное и внутримолекулярное взаимодействие, колебательные спектры.

Theoretical Analysis of the Adiabatic Potential Parameters for Monomer and Dimers of Salicylic Acid

M. D. Elkin, A. N. Pankratov, A. R. Gaisina

On the base of DFT quantum chemical computations of the adiabatic potential parameters of salicylic acid, structural dynamic models for its monomer and dimers have been proposed.

Key words: salicylic acid, adiabatic potential, intermolecular and intramolecular interaction, vibrational spectra.

Салициловая (2-аминобензойная) кислота (2-HOC $_6$ H $_4$ COOH) представляет известный прак-

тический интерес для фармакологии, биохимии и биофизики. Отметим, например, недавнюю работу [1], в которой сообщается о дифференциальной регуляции салициловой кислотой транскрипции митохондриальных генов $Lupinus\ luteus\ L$., в том числе генов, кодирующих компоненты основной цепи переноса электронов.

В реальных условиях подобные соединения образуют водородносвязанные димеры, сложная структура полос которых в высокочастотной области колебательных спектров до настоящего времени является предметом научных дискуссий [2–5].

Решение проблемы интерпретации колебательных спектров карбоновых кислот напрямую связано с оценкой параметров адиабатического потенциала мономеров и димеров, поскольку в теории строения молекул принято считать, что