

- нении: учеб. пособие для вузов. 2-е изд., перераб. и доп. М.: Высш. шк., 2002. 336 с.
- 2. Смирнов А. Д. Сорбционная очистка воды. Л.: Химия, Ленингр. отд-ние, 1982. 169 с.
- 3. Тарасевич Ю. И. Природные сорбенты в процессах очистки воды. Киев: Наук. думка, 1981. 207 с.
- 4. Тарасевич Ю. И. Адсорбция на глинистых минералах. Киев: Наук. думка, 1975. 329 с.
- 5. Narayanan C. Alumina pillared montmorillonite: characterization and catalysis of toluene benzylation and aniline ethylation // Appl. Catalysis A: Genegal. 2000. Vol. 193, № 1-2. P. 17-27.
- 6. Brindley G. W., Sempels R. E. Preparation and properties of some hydroxyl-aluminum beidellites // Clays and Clay Minerals. 1977. Vol. 12, № 3. P. 229–237.
- 7. Комаров В. С. Влияние условий синтеза на физикохимические свойства сорбентов на основе монтмориллонита и основных солей железа // Коллоид. журн. 1995. T. 57, № 1. C. 51-54.
- 8. Tichit D., Fajula F., Figuera F. Sintering of montmorillonites pillared by hydroxy-aluminum species // Clays and Clay Minerals. 1988. Vol. 36, № 4. P. 369-375.

УДК 543.51

К ВОПРОСУ ВЫБОРА ДЕРИВАТИЗИРУЮЩЕГО АГЕНТА ПРИ ПЕРЕВОДЕ МЕТИЛФОСФОНОВОЙ КИСЛОТЫ И ЕЕ О-АЛКИЛОВЫХ ЭФИРОВ В ХРОМАТОГРАФИРУЕМЫЕ ПРОИЗВОДНЫЕ

Р. И. Кузьмина, Н. С. Денисов, С. Н. Денисов¹, В. З. Угланова

Саратовский государственный университет 1Саратовская кадетская школа-интернат № 2

E-mail: kuzminaraisa@mail.ru

Методом хромато-масс-спектрометрии исследованы образцы продуктов дериватизации метилфосфоновой кислоты и ее эфиров. Рассмотрены особенности и выбраны условия дериватизации высококипящих фосфорорганических соединений.

Ключевые слова: фосфорорганические соединения, хроматомасс-спектрометрия, дериватизация, метилфосфоновая кис-

To the Question the Choice of a Derivatizing Agent for the Transfer of Methylphosphonic Acid and its O-alkils Ethers to Chromatographic Derivatives

R. I. Kuzmina, N. S. Denisov, S. N. Denisov, V. Z. Uglanova

The products of the derivatization of methylphosphonic acid and its ethers were investigated by gas chromatography — mass spectrometry. The optimum conditions of the derivatization of higher-boiling organophosphorus compounds were described

Key words: organophosphorus compounds, gas chromatographymass spectrometry, derivatization, methylphosphonic acid.

Введение

В настоящее время производные фосфоновых кислот (алкилфосфонаты) достаточно широко используются в промышленности, в частности, в теплоэнергетике; в пищевой, парфюмерной и текстильной промышленности – как добавки, ингибирующие образование накипей и коррозию в автоклавах; для понижения жесткости воды; в нефте- и газодобыче, в нефтепереработке с целью предотвращения гипсовых отложений в трубопроводах; как добавки к удобрениям; в строительстве, а также являются продуктами переработки отравляющих веществ нервно-паралитического действия. Основным продуктом деструкции фосфорорганических отравляющих веществ, а также их метаболитами в биологических средах являются метилфосфоновая кислота (МФК), ее соли и эфиры. МФК и её производные - ксенобиотики, не входящие в биотический круговорот, попадая в окружающую природную среду, нарушают обмен веществ, могут вызвать аллергические реакции, снижать иммунитет, изменять наследственные признаки и приводить к гибели организмов. Поэтому разработка методик определения МФК и её эфиров, являющихся маркерами фосфорорганических соединений, в настоящее время является актуальной.

Известно, что применение хромато-массспектрометрических аналитических комплексов (ГХ-МС), в которых в качестве разделительной системы используется газовый хроматограф, не позволяет напрямую определять фосфоновые

кислоты и их кислые эфиры вследствие их высокой температуры кипения и наличия в структуре активных полярных гидроксильных групп [1, 2]. Обработка же анализируемых веществ дериватизирующими агентами позволяет перевести полярные вещества, такие как метилфосфоновая кислота, О-изопропилметилфосфонат, О-изобутилметилфосфонат, О-пинаколилметилфосфонат в легкокипящие, меняя их масс-спектральные характеристики, такие как интенсивность пиков молекулярных и характеристических осколочных ионов, направление и селективность распада, вероятность захвата электронов или сродство к протону и др., повышая эффективность и селективность анализа [3].

Однако, с другой стороны, получение производных - это дополнительная операция, усложняющая общую схему анализа. Для хромато-масс-спектрометрии очень важен также правильный выбор производных и методов их получения, так как степень превращения разных компонентов может быть различной. В оптимальном случае реакция, используемая для получения производных, должна быть достаточно простой, селективной и приводить к количественному блокированию функциональных групп. Получаемые производные должны обладать меньшей адсорбционной способностью и большей термостабильностью по сравнению с исходными веществами, хорошей стабильностью в растворителях, стойкостью к гидролизу [4].

В связи с этим целью настоящей работы является изучение возможности получения хроматографических и масс-спектрометрических характеристик метилфосфоновой кислоты и ее эфиров с использованием четырех методов анализа: ГХ-МС с электронным ударом (ЭУ); ГХ-МС с положительной химической ионизацией (ХИ) метаном; ГХ-МС с отрицательной химической ионизацией (ХИ) метаном; ГХ-МС с отрицательной химической ионизацией (ХИ) изобутаном.

Экспериментальная часть

В качестве объектов исследования выбраны следующие представители фосфорорганических веществ – метилфосфоновая кислота (Мегск, Германия), синтезированные О-изопропилметилфосфонат, О-изобутилметилфосфонат, О-пинаколилметилфосфонат с содержанием основного вещества более 98%. Для получения дериватов полярных продуктов деструкции фосфорорганических соединений был приготовлен рабочий рас-

твор, представляющий смесь метилфосфоновой кислоты, О-изопропилметилфосфоната, О-изобутилметилфосфоната, О-пинаколилметилфосфоната с массовой концентрацией 0,1 мг/см³ каждого компонента. В качестве растворителя использовали ацетонитрил.

Для получения летучих производных продуктов деструкции фосфорорганических соединений используются три варианта дериватизации: метилирование; третбутилдиметилсилилирование; пентафторбензилирование [5–11]. При трех различных способах дериватизации выдерживалось одинаковое содержание метилфосфоновой кислоты и ее эфиров в объеме пробы, равном 0,35 см³. Это позволило корректно оценить полученные результаты анализа [12, 13].

При *метилировании* использовали свежесинтезированный раствор диазометана в диэтиловом эфире. В хроматографическую виалу вместимостью 1,8 см³ вносили 0,25 см³ рабочего раствора, затем в токе азота его концентрировали до мокрого остатка и добавляли 1,5 см³ диазометана в диэтиловом эфире. После обесцвечивания раствора проводили концентрирование в токе азота до 0,35 см³. Содержание метилфосфоновой кислоты и ее эфиров в объеме пробы (0,35 см³) составляло 25 мкг (0,07 мкг/мкл).

При силилировании рабочего раствора метилфосфоновой кислоты и ее эфиров метаболитов фосфорорганических соединений (с концентрацией каждого компонента 0,1 мг/см³) использовали N-(третбутилдиметилсилил)-N-метилтрифторацетамид. В хроматографическую виалу вместимостью 1,8 см³ помещали 0,25 см³ рабочего раствора и добавляли 0.1 cm^3 чистого N-(третбутилдиметилсилил)-Nметилтрифторацетамида. Виалу герметизировали, содержимое перемешивали на ультразвуковой бане в течение 5 мин и выдерживали 30 мин в термостате при температуре 60-65°C. Содержание метилфосфоновой кислоты и ее эфиров в объеме пробы (0.35 см^3) составляло 25 мкг (0,07 мкг/мкл).

При пентафторбензилировании рабочего раствора метилфосфоновой кислоты и ее эфиров продуктов деструкции фосфорорганических веществ (с концентрацией каждого компонента 100 мкг/см³) использовали пентафторбензилбромид. В хроматографическую виалу вместимостью 1,8 см³ помещали 0,25 см³ рабочего раствора и добавляли 0,08 см³ ацетонитрила, 50 мг карбоната калия, 0,02 см³ пентафторбензилбромида. Виалу герметизировали, перемешивали на ультразвуковой бане в течение 5 мин и выдерживали в термостате в течение 60 мин при

Xnmns 35

температуре 90–95°C. Содержание метилфосфоновой кислоты и ее эфиров в объеме пробы $(0,35 \text{ см}^3)$ составляло 25 мкг (0,07 мкг/мкл).

Исследование проводили методом хроматомасс-спектрометрии на двух хромато-масс-спектрометрических аналитических комплексах НР 5890/5989 и Agilent 6890/5973 с ионизационным пламенным детектором с использованием капиллярной колонки НР-5 (Supelko, 25 м × 0,2 мм × 0,33 мкм). Объем вводимой в ГХ-МС пробы составлял 1,0 мкл. Хроматографирование проводили при программировании температуры от 40 °C до 280 °C со скоростью 10°С/мин.

Результаты и их обсуждение

Как известно, метилфосфоновая кислота и её эфиры могут быть определены методами газовой хроматографии и хромато-масс-спектрометрии только в виде производных. Для получения летучих производных МФК и ее эфиров использовали варианты дериватизации. Результаты исследования представлены в табл. 1–3. Показано, что независимо от вида дериватизации порядок выхода производных МФК и её эфиров

не меняется. При метилировании и пентафторбензилировании О-пинаколил МФК имеет две формы, выходящие в виде двух пиков (см. табл. 1, 3), при силировании – лишь один пик (см. табл. 2). Следует отметить и изменение времен удерживания продуктов в зависимости от вида дериватизации.

Установлено, что на количественные характеристики (площадь и высоту) оказывает влияние и метод ГХ-МС. Так, в случае метилирования (см. табл. 1) площади пиков и высоты исследуемых веществ при переходе от ГХ-МС ЭУ к ГХ-МС с положительной ХИ метаном уменьшаются в \sim 12 и \sim 6 раз соответственно, а при переходе от ГХ-МС ЭУ к ГХ-МС с отрицательной ХИ метаном – в \sim 160 и \sim 120 раз.

Аналогичные результаты получены и в случае силирования (см. табл. 2). Установлено, что при анализе силилированных производных метилфосфоновой кислоты и ее кислых эфиров предпочтительно использование метода ГХ-МС ЭУ, так как в этом случае площади пиков анализируемых веществ в несколько раз выше, чем при использовании ГХ-МС с различными вариантами ХИ.

Таблица 1 Хромато-масс-спектрометрические характеристики продуктов деструкции фосфорорганических соединений, полученных метилированием метилфосфоновой кислоты и ее эфиров. HP5989 (n=3, P=0,95)

Продукт деструкции	Наиболее интенсивные ионы в масс-спектре	Время удерживания, мин	Площадь пика, тыс. ед. ²	Высота пика, тыс. ед.			
ГХ-МС ЭУ							
Метилфосфоновая кислота	79(93), 94 (100), 109(32)	8,11	2400	90			
О-изопропил-метилфосфонат	93(98), 111 (100), 137(40)	9,92	2900	120			
О-изобутил-метилфосфонат	79(18), 93(51), 111 (100)	11,90	2400	120			
О-пинаколил-метилфосфонат	93(47), 111 (100), 138(49)	13,55; 13,66	2800 (суммарн.)	75			
ГХ-МС с положительной ХИ метаном							
Метилфосфоновая кислота	111(9), 125 (100), 153(5), 165(6)	8,11	600	30			
О-изопропил-метилфосфонат	111 (100), 139(28), 153(19)	9,92	400	20			
О-изобутил-метилфосфонат	111 (100), 139(34), 167(30)	11,89	200	15			
О-пинаколил-метилфосфонат	69(68), 83(98), 85(96), 111(100)	13,54; 13,65	200 (суммарн.)	5			
ГХ-МС с отрицательной ХИ метаном							
Метилфосфоновая кислота	93(10), 109(18), 123 (100)	8,12	15	0,5			
О-изопропил-метилфосфонат	109(8), 137(13), 151 (100)	9,92	15	1,0			
О-изобутил-метилфосфонат	109(5), 151(11), 165 (100)	11,90	20	1,0			
О-пинаколил-метилфосфонат	109(22), 165(12), 193 (100)	13,55; 13,65	15 (суммарн.)	0,5			

36 Научный отдел

Таблица 2 Хромато-масс-спектрометрические характеристики третбутилдиметилсилиловых эфиров продуктов деструкции фосфорорганических соединений HP5989 (n=3, P=0,95)

Продукт деструкции	Наиболее интенсивные ионы в масс-спектре	Время удерживания, мин	Площадь пика, тыс. ед. ²	Высота пика, тыс. ед.			
ГХ-МС ЭУ (НР5989)							
Метилфосфоновая кислота	73(20), 153(8), 267 (100)	18,79	12600	500			
О-изопропил-метилфосфонат	75(12), 153 (100), 195(8)	15,35	4500	240			
О-изобутил-метилфосфонат	75(14), 121(6), 153 (100)	16,90	4000	170			
О-пинаколил-метилфосфонат	75(10), 153 (100), 237(12)	18,35	4000	170			
ГХ-МС с положительной ХИ метаном							
Метилфосфоновая кислота	267(51), 309(50), 325 (100)	18,80	4800	250			
О-изопропил-метилфосфонат	195(45), 211 (100), 253(78)	15,35	1500	85			
О-изобутил-метилфосфонат	211(58), 251(25), 267 (100)	16,90	1000	60			
О-пинаколил-метилфосфонат	195(21), 211 (100), 239(26)	18,36	700	35			
ГХ-МС (НР5989) с <i>отрицательной</i> ХИ метаном							
Метилфосфоновая кислота	194(13), 209(61), 323 (100)	18,78	1000	70			
О-изопропил-метилфосфонат	137(31), 194(20), 251 (100)	15,34	500	25			
О-изобутил-метилфосфонат	151(28), 194(26), 265 (100)	16,89	500	25			
О-пинаколил-метилфосфонат	179(43), 293 (100), 318(31)	18,34	500	25			

Таблица 3 Хромато-масс-спектрометрические характеристики пентафторбензиловых эфиров продуктов деструкции фосфорорганических соединений. HP5989 (n=3, P=0,95)

Продукт деструкции	Наиболее интенсивные ионы в масс-спектре	Время удерживания, мин	Площадь пика, тыс.ед. ²	Высота пика, тыс. ед.			
ГХ-МС ЭУ							
Метилфосфоновая кислота	181 (100), 197(73), 275(28)	22,00	7000	350			
О-изопропил-метилфосфонат	80(63), 181 (100), 256(42)	17,32	5000	230			
О-изобутил-метилфосфонат	80(33), 181 (100), 256(37)	18,67	4000	220			
О-пинаколил-метилфосфонат	123(61), 181 (100), 256(44)	19,77; 20,00	4500	110			
ГХ-МС с положительной ХИ метаном							
Метилфосфоновая кислота	181(32), 457 (100), 485(13)	22,01	6000	260			
О-изопропил-метилфосфонат	277 (100), 305(23), 319(26)	17,33	6000	380			
О-изобутил-метилфосфонат	277 (100), 305(21), 333(47)	18,68	5000	280			
О-пинаколил-метилфосфонат	183(43), 277 (100), 305(17)	19,76; 20,00	2000	70			
ГХ-МС с отрицательной ХИ метаном							
Метилфосфоновая кислота	275 (100), 276(9)	22,01	10000	200			
О-изопропил-метилфосфонат	137 (100), 138(5)	17,32	1600	70			
О-изобутил-метилфосфонат	151 (100), 152(5)	18,67	10000	250			
О-пинаколил-метилфосфонат	179 (100), 180(9)	19,76; 20,00	10000	150			
ГХ-МС с отрицательной ХИ изобутаном							
Метилфосфоновая кислота	275 (100), 276(10)	22,12	40000	1000			
О-изопропил-метилфосфонат	137 (100), 138(5)	17,34	5900	200			
О-изобутил-метилфосфонат	151 (100), 152(7)	18,68	25000	1000			
О-пинаколил-метилфосфонат	179 (100), 180(9)	19,77; 20,01	40000	900			

Xnmna 37

Анализ полученных результатов, представленных в табл. 1–3, позволил отдать предпочтение процедурам третбутилдиметилсилилирования и пентафторбензилирования продуктов деструкции фосфорорганических соединений с целью их последующего целевого анализа, а в случае проведения силилирования ограничиться использованием только метода ГХ-МС ЭУ.

Для доказательства качественного состава образцов метилфосфоновой кислоты и её кислых эфиров, принимая во внимание высокую чувствительность, селективность и воспроизводимость анализа, в дальнейших исследованиях рекомендовано использовать N-(третбутилдиметилсилил)-N-метилтрифторацетамид. Известно, что введение триметилсилильных (ТМС) групп значительно повышает летучесть исследуемых соединений, получаемые производные обладают необходимыми для анализа газохроматографическими свойствами [14]. В масс-спектрах химических соединений, содержащих триметилсилильную группу, наблюдается триплет пиков в области молекулярных ионов, обусловленный наличием у кремния изотопов ²⁹Si и ³⁰Si. Кроме того, для ТМС-производных характерно отщепление частиц CH₃ и (CH₃)₃Si (15 и 73 а.е.м. соответственно) от молекулярного иона.

Список литературы

- 1. *Хмельницкий Р. А., Бродский Е. С.* Хромато-массспектрометрия. М., 1984. 210 с.
- 2. *Рудаков О. Б., Востров И.А.* Спутник хроматографиста. Воронеж, 2004. 528 с.
- 3. Денисов С. Н., Денисов Н. С. Исследование возможных путей фрагментации метилфосфоновой кислоты и её эфиров с использованием масс-спектрометрии // Поволж. торг.-экон. журн. 2014. Т. 38, № 4. С. 13–28.
- 4. *D'Agostino P. A., Provost L. R.* Determination of chemical warfare agents, their hydrolysis products and related

- compounds in soil // J. Chromatogr. A. 1992. $\[N_2 \]$ 589. P. 287–294.
- 5. Bianchi F., Careri M., Mucchino C., Musci M. Improved determination of chlorophenols in water by solid-phase microextraction followed by benzoylation 153 and gas chromatography with electron capture detector // Chromatographia. 2002. Vol. 55, № 9/10. P. 595–600.
- 6. Hanada Y., Imaizumi I., Kido K., Tanizaki T., Koga M., Shiraishi H., Soma M. Application of a pentafluorobenzyl bromide derivatization method in gas chromatography/mass spectrometry of trace levels of halogenated phenols in air, water and sediment samples // Analytical Sciences. 2002. Vol. 18. P. 655–659.
- Sithole B. B., Williams D. T., Lastoria C., Robertson J. L. Determination of halogenated phenols in raw and portable water by selected ion gas chromatographymass spectrometry // J. Assoc. Off. Anal. Chem. 1986. Vol. 3. P. 466–473.
- 8. *Albaiges J., Casado F., Ventura F.* Organic indicators of groundwater pollution by a sanitary landfill // Water Resources. 1986. Vol. 20, № 9. P. 1153–1159.
- 9. *Kojima M., Tsunoi S., Tanaka M.* High performance solid-phase analytical derivatization of phenols for gas chromatography-mass spectrometry // J. Chromatogr. A. 2004. Vol. 1042, № 1–2. P. 1–7.
- Lamparski L. L., Nestrick T. J. Determination of trace phenols in water by gas chromatographic analysis of heptafluorobutyryl derivatives // J. Chromatogr. 1978. Vol. 156. P. 143–151.
- 11. Saraji M., Bakhshi M. Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatographymass spectrometric detection // J. Chromatogr. A. 2005. Vol. 1098, № 1–2. P. 30–36.
- 12. Савельева Е. И., Кузнецова Т. А., Радилов А. С. Определение метилфосфоновой кислоты и ее эфиров как химических маркеров фосфорорганических отравляющих веществ // Журн. прикладной химии. 2001. Т. 74, вып. 10. С. 1671–1676.
- 13. Яшин Я. И., Яшин Е. Я., Яшин А. Я. Газовая хроматография. М., 2009. 528 с.
- 14. Кирби А., Уоррен С. Органическая химия фосфора / пер. с англ.; под ред. А. Н. Пудовика. М., 1971. 403 с.

38 Научный отдел