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Abstract. Molecular imprinting is a rapidly developing and promising approach for the selective recognition for target molecules of different
nature. In this review, we have collected works devoted to synthesis and application of polyaniline-based molecularly imprinted polymers (MI-
PANI) over the last 5 years. The manuscript provides brief descriptions of the main approaches to the synthesis of PANI MIPs and the advantages
and disadvantages of each technique. We also discuss the effect of various factors on the process of MI-PANI synthesis, including polymerization
methods, molecular weight of template molecules and the types of scaffolds. The analytical characteristics of the resulting sensors are also
provided. Thus, it can be concluded that polyaniline is a very promising material for MIPs synthesis.
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AHHOTaLuA. MonekynspHbIil UIMAPUHTAHT SBASETCS BbICTPO Pa3BUBAOLYMMCA U NEPCNEKTUBHBIM MOAX0A0M CENeKTUBHOTO pacno3HaBaHms
Mosekyn-MuLLeHeii pasnnyHoi npupogbl. B 063ope cobpaHbl paboTbl, MOCBALLEHHbIE CUHTE3Y 1 NPUMEHEHINI0 MONIEKYNAPHO-MMMPUHTUPOBAH-
HbIX NONMMEPOB Ha ocHoBe noauannauHa (MA-MAHN) 3a nocnegHue 5 ner. MpusefeHo KpaTKoe ONMCaHNe OCHOBHBIX NOAX0A0B K CuHTe3y MU-
MAHW, a TaKoKe paccMoTpeHbl UX NpenMyLLecTBa U HeocTatku. 06CyX/AEHO BANSHUE Pa3nnyHbIX GakTopoB Ha npovecc cuHtesa MUA-MAHN, B
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Introduction

In recent years, molecular imprinting technique
has become a powerful tool for the synthesis of lock
and key systems that are very effective at captur-
ing the target molecules. Molecularly imprinted
polymers (MIPs) are highly cross-linked polymers
containing artificially created cavities called recog-
nition sites that selectively bind template molecules
[1, 2, 3]. As synthetic receptors, MIPs are character-
ized by high stability, durability, and low synthesis
costs. More than 10 000 molecules with different
structure have been used as template molecules for
the MIP synthesis [2], including inorganic ions [4],
drugs [5], pesticides [6], proteins [7, 8], viruses [9],
cellular structures [10] and various macromolecules
and microorganisms [11, 12]. The current theoretical
and experimental knowledge offers an opportunity to
develop MIP-based systems to address a wide range
of challenges in science and technology including
analytical chemistry and separation science [13].

MIPs are based on polymers of various na-
ture. There are polymers of natural origin, such
as chitosan obtained from chitin [14], but the most
common polymers used for MIP synthesis are those
that contain monomers with basic (vinylpyridine),
acidic (methacrylic acid) and hydrogen bonds
(methacrylamide) or hydrophobic groups (styrene).
Usually, MIPs are electrically insulating polymers,
that may lead to low sensitivity and selectivity of
analytical systems due to the electron transport
barrier. This disadvantage of MIPs can be overcome
by using conductive polymers with characteristic
electrochemical activity [15]. Their synthesis can be
carried out using simple, versatile and cost-effective
approaches. Conductive polymers can assemble into
supramolecular structures [16] turning them into
a prospective matrix for MIPs design. One of the
most interesting conductive polymers is polyaniline
(PANI), characterized by good biocompatibility,
high physical and chemical stability, adaptability of
synthesis and high electrical conductivity. PANT is
capable of self-assembly, leading to increases in the
surface area to volume ratio, a fact that is relevant
to the case of MIPs development. Moreover, PANI

Xumuns

is the only conductive polymer whose electronic
structure, magnetic and optical properties, electrical
conductivity and structural features can be adjusted
by doping—dedoping process [17].

In this review, we considered the studies of the
molecularly imprinted polyaniline (MI-PANI) over
the past 5 years. We compared various methods of
MI-PANTI synthesis, and discussed their prospects
and application fields.

Synthesis of Molecularly Imprinted Polyaniline

The synthesis of MIPs is based on the formation
of a complex between the template molecule and the
functional monomer through covalent or non-covalent
interactions, followed by the removal of the template
molecules from the polymer network. The functional
monomer determines the method of polymerization,
including electropolymerization, chemical polym-
erization, creation of composite membranes (MIPs
particles and conductive material), phase inversion,
lithography and surface stamping [1, 18].

PANI is a widely studied and the most inte-
resting example among conductive polymers for
MIPs synthesis. There is a large number of studies
describing the properties of PANI, its synthesis
methods and applications [19, 20]. The morphology of
PANTI structures ranges from nanoparticles (NPs) to
micron-sized clusters. Depending on the purpose of
the further application, PANI can be synthesized in
different forms, such as films [21, 22, 23], nanotubes
[24], nanospheres [25], nanowires [26], nanofibres
[27, 28, 29] and multicomponent structures [30].
Much experience has been gained over the recent
decade regarding the synthesis of different PANI
structures that can be adapted to MIPs creation.

The important features of PANI are simplicity
and low cost of synthesis compared to other poly-
mers and commercial availability of reagents. Other
benefits of PANI include low toxicity, high conduc-
tivity, good redox reversibility and environmental
resistance [19, 31]. These properties provide the
opportunity to develop low-cost analytical systems
based on MI-PANI that meet the requirements of
“green chemistry”.
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There are two main methods of MI-PANI syn-
thesis [19]: electrochemical and chemical polymeri-
zation of aniline in the presence of various oxidants.
The choice of the method depends upon the task and

various forms of MI-PANI can be obtained by vary-
ing the polymerization conditions. Comparison of
electrochemical and chemical oxidative polymeriza-
tion methods is provided in Table 1.

Table 1
Electrochemical and chemical polymerization of aniline
Comparison Electrochemical polymerization Chemical polymerization
Simplicity of synthesis
High purity of the product Wide choice of oxidants
Advantages High product yield (wt. %) Wide scaffold types
Synthesis process control Semi-industrial
yield of product
Limited electrode surface area . . -
. . . . The complexity of synthesis monitoring
Disadvantages | Requires electrically conductive scaffold Costly and time-consumine purification of the product
Leaching of MIPs y &P P
Morpholo Nanowires [32, 33] Nanoparticles [33, 34, 35, 36, 37, 38]
CEMLDASY | Film 21,31, 34, 35] Film [22, 23, 39]
Nanofibers [28, 29] Nanotubes [24]

The electrochemical polymerization of
aniline is the most common approach for PANI
synthesis [22]. The main disadvantage of the
electrochemical synthesis of PANI is the need
to use an electrically conductive scaffold for the
synthesis of polymer films [40]. The main advan-
tage of this method is the high quality of the final

product containing a low level of impurities, that
does not require further purification from unre-
acted monomer and initiator molecules. Table 2
shows the examples of MI-PANI synthesis via
electrochemical polymerization methods in terms
of the morphology of the resulting structures and
the electrode materials.

Table 2
Electrochemical synthesis of molecularly imprinted polyaniline
MI-PANTI structure Synthesis method Template Electrode material Ref.
CA, CV [32]
Nanowires Chloramphenicol
Gold [33]
Histamine [41]
Graphene [21]
Cardiac troponin T
[42]
CV
Azithromycin Glassy carbon electrode [43]
Film Cefixime [44]
B-Amyloid-42 Copper@carbon nanotubes [45]
L-ascorbic acid Graphite [34]
n/a Dapsone Platinum with nanoparticles of Fe,0, [35]
PE Melamine Glassy carbon electrode [31]

Note. CA — Chronoamperometry, CV — Cyclic voltammetry, PE — Potentiodynamic electropolymerization.

According to the applied electrode voltage
mode, three electrochemical polymerization reac-
tion methods can be realized — cyclic voltammetry
[21], differential voltammetry [46], and chrono-
amperometry [33]. Synthesis is carried out on the
surface of electrodes made of an inert conducting
material in aqueous solutions containing background

144

electrolytes and acids to increase ionic conductivity.

Electrochemical polymerization is mainly used
for the synthesis of MI-PANTI films on the electrode
surface, and precise control of film thickness is pos-
sible. However, the synthesis of complex MI-PANI
structures requires the use of special matrices [47].
In addition, obtaining MI-PANTI in large quantities

HayuyHbivi oTaen
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via electrochemical polymerization is difficult, as
the synthesis is only carried out on the area limited
by the electrode surface.

Chemical polymerization of aniline is a simple
method to produce PANI with different morpholo-
gies in large quantities [48]. The main advantages of
chemical polymerization over the electrochemical
method are the wide choice of monomers and the
ability to synthesize the polymer matrix on any type
of substrate or without substrates. Chemical polym-
erization of aniline is carried out in the presence of
various oxidants [49] such as potassium dichromate,
potassium permanganate, iron (III) chloride and
others. The most widely used oxidant is ammonium
persulfate [50], as it has good solubility in aqueous
media and provides a high yield (~90 %) of products.

The method and conditions of aniline chemical
polymerization leads to differences in the electro-
mechanical, morphological, structural and physical
properties of resulted PANI [51] and, therefore, MI-
PANI properties. Chemical polymerization makes it
possible to obtain MI-PANTI in nanowires and films
forms, similar to electro polymerization, as well

as a wide range of other MI-PANI nanostructures,
including granules, nanotubes, microspheres, and
nanospheres. MI-PANI nanostructures have several
advantages over films, namely a large surface area
and high porosity of particles that allows decreasing
the cost of analysis and sample volume [52]. Moreo-
ver, the morphology of MI-PANI nanostructures
facilitates the immobilization of various biocatalysts
and bioreceptors on their surface, thereby increas-
ing the sensitivity of analysis [53]. The wider linear
range of analyte determination is obtained due to the
large specific surface area of MI-PANI nanoparticles,
while the low detection limit is attributed to the high
electrical conductivity of PANI [15].

Analytical Application of Molecularly Imprinted
Polyaniline

MI-PANTI has already found successful appli-
cations for analytical purposes. Its main purpose is
modification of electrodes, as MI-PANI obtained by
both electrochemical and chemical methods can be
used for such purpose. Some examples of analytical
systems based on MI-PANT are provided in Table 3.

Table 3
Analytical characteristics of molecularly imprinted polyaniline
MI-PANI structure Template LOD, pM (ng-mL™1) LR, pM (ng-mL™1) Ref.
Adrenaline 0.001 0.001-100 [54]
Azithromycin 0.1-1073 {0.3-920} - 1073 [43]*
B-Amyloid-42 (400) (1-66) [45]*
(8.0-107%) (0.02-0.09) [21]*
Cardiac troponin T
(40) (100-8-10%) [42]*
Film Cefixime 7.1-1073 0.02-0.95 [44]*
Flucarbazone 5.8 100-1-10° [55]*
Glucose 1.2 - 103 {2-11} - 103 [22]
Histamine 0.21 0.5-1000 [41]*
L-ascorbic acid 1.0 1-100 [34]*
Melamine 45-1074 {0.6-16} - 1073 [31]*
Nanotubes (3.6-107% (1073-1-10?) [24]
Horseradish peroxidase
(7-107%) (0.05-10) [26]
Nanowires 1.0- 1074 - [32]*
Chloramphenicol
1.2-1073 1072-103 [33]*
Aldicarb 5.0-107 {50-80} - 1073 [28]
Nanofibers
Calycosin 8.5-1072 0.42-129 [29]*
Ovalbumin (1.0-1079) (10™4-1) [36]
Nanoparticles p-Nitrophenol 20 60-140 [37]
Paracetamol 50 0.4-1-103 [15]

* — MI-PANI synthesized by electrochemical methods; LOD — Limit of detection; LR — Linear range.

Xumuns
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As we can see, the MI-PANI can be used for
determination of low- and high molecular weight
compounds on the nanomolar concentrations. The
MI-PANI nanoparticles (NPs) for such purpose were
synthesized via oxidative polymerization of aniline
within the micelles [15] with ammonium persulfate
used as an oxidizing agent. A selective recognition
element based on MI-PANI NPs has been devel-
oped for paracetamol determination; this element is
characterized by a particularly low detection limit.
The developed approach has several advantages:
polymerization is carried out in an aqueous medium
and is harmless to the environment; simultaneous
synthesis of NPs and imprinting reduce the time of
MIPs creation; the approach is universal and can be
adapted for other template molecules.

Various nanocomposites can be used as scaf-
fold for MI-PANI synthesis. For example, a binary
CuWO,@PANI nanocomposite has been used by
Ponnaiah S.K. and Periakaruppan P. [30] to deter-
mine the quercetin level in blood, urine and natural
samples without complicated pretreatment. Fatahi
et al. have developed [56] an electrochemical sen-
sor based on Fe,0,/PANI-Cu'! microspheres for
dexamethasone monitoring in real samples, such
as human urine and serum using differential pulse
voltammetry. The urine sample was centrifuged and
diluted 10 times without any further pretreatment.
The serum sample was treated with methanol to
precipitate proteins, and precipitated proteins were
subsequently separated out by centrifugation.

Quantum dots are also an interesting nano-
dimension scaffold. Li et al. [57] have reported the
application of CdTe quantum dots as a selective and
sensitive fluorescent nanosensor based on surface
imprinting technology. The sensor was used for
evaluation of rutin in fruits, vegetables and medici-
nal plants in the concentration range of 0.1-30 mM,
with the detection limit being 0.04 mM. Authors of
study [58] describe a nanocomposite probe based
on quenching the fluorescence of quantum dots to
detect lomefloxacin. The efficiency of the described
probe is based on a combination of the quantum dots
sensitivity, the MIP selectivity, and the high adsorp-
tion PANT affinity.

In some cases, expensive scaffolds and equip-
ment are not required for sensor fabrication. For
example, Chen el al. [22] report the procedure for
chemical synthesis of MI-PANI performed on the
surface of paper strips, that were then connected to
the electrode surface. This manufactured electro-
chemical sensor can determine the concentration
of glucose in the blood. The authors noted lower
temperature and humidity influence, simplicity, and
low cost of such sensors compared to existing ones.
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Saksena K. et al. [34] describe the development
of an enantioselective sensor for chiral and quantita-
tive monitoring of L-ascorbic acid in serum medium.
Polymerization has been performed using cyclic
voltammetry on the surface of the graphite pencil rod
resulting in formation of a uniform, homogeneous
and ultrathin film of MI-PANIL.

Wang et al. [24] describe the facile horserad-
ish peroxidase electrochemical biosensor based on
modification of a glassy carbon electrode with a
MI-PANI nanotubes chemically synthesized in
aqueous solution. Recently, we have also obtained
nanowire structured MI-PANTI for horseradish per-
oxidase determination [26]. The developed approach
has been used to determine the enzyme immobilized
on the inner surface of glass polycapillary using
optical detection via a chromogenic reaction with
3,3',5,5'-tetramethylbenzidine.

A large number of studies [32, 33, 35, 43, 58]
is dedicated to the development of MI-PANI based
antibiotic sensors. Compared to other means of anti-
biotic analysis, the use of molecular imprinting-based
devices usually does not require a time-consuming
stage of sample preparation. In addition, MIP based
sensors are comparatively simple and cheap in manu-
facturing, have high selectivity and reproducibility,
and can be used for electro-inactive compounds. The
use of MI-PANT is not limited to antibiotics analysis
in food and wastewaters, for example application of
MI-PANT for clinically important substances has
been reported by many studies [21, 22, 29, 31, 36,
42, 45, 46, 54].

Conclusion

Therefore, we have shown that PANI is the
great potential material for MIPs synthesis for
low- and high-molecular weight-targets including
complex objects. The obvious advantages of PANI
as a matrix polymer for MIPs synthesis are high
stability and biocompatibility. Various procedures of
MI-PANI synthesis result in obtaining MIPs layers
with dramatically different structure and properties.
These considerations suggest that PANI will remain
the object of keen interest in the field of molecular
imprinting for a long time.
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