Cite this article as:

Gorbachev I. A., Glukhovskoy E. G. The Studying of Components Ratio Influence in Mixed Monolayers of Quantum Dots and Arac hidic Acid on the Films Morphology Based on Them. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 3, pp. 299-305. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The Studying of Components Ratio Influence in Mixed Monolayers of Quantum Dots and Arac hidic Acid on the Films Morphology Based on Them


The formation process of quantum dots stabilized by the trioctylphosphine oxide and arachidic acid molecules mixed monolayers was studied. An equation that determines a dependence of numbers of organic matrix molecules that separates quantum dots on e from each other in the close-packing Langmuir monolayer from quantum dots size was proposed. An existence of minimal numbers of organic matrix molecules for changing and tuning a distance between quantu m dots in the Langmuir monolayer was shown. The solutions with ratio between numbers of quantum dots and matrix molecule numbers of 1:5, 1:13, 1:26, 1:52 and 1:130 were studied. The mixed monolayers of indicated components ratio were studied by the compression isotherms method, transferred on solid glass substrates and studied via atomic force microscopy. An influence of components ratio in mixes Langmuir monolayers of quantum


1. Randall J. N., Luscombe J. H. Chapter 13 - Quantum Dot Devices // VLSI Electronics Microstructure Science. 1994. Vol. 24. P. 419–445.

2. Kima H. S., Yoon K. B. Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell // Coordination Chem. Rev. 2014. Vol. 263–264. P. 239–256.

3. Kale S., Kale A., Gholap H., Rana A., Desai R., Banpurkar A., Ogale S., Shastry P. Quantum dot bio-conjugate: as a western blot probe for highly sensitive detection of cellular proteins // J. Nanopart Res. 2012. Vol. 14. P. 732–747.

4. Олейников В. А., Суханова А. В., Набиев И. Р. Флуоресцентные полупроводниковые нанокристаллы в биологии и медицине // Рос. Нанотехнологии. 2007. Т. 2, № 1–2. С. 160–173.

5. Martın-Sanchez J., Munoz-Matutano G., Herranz J., Canet-Ferrer J., Alen B., Gonzalez Y., Alonso-Gonzalez P., Fuster D., Gonzalez L., Martınez-Pastor J., Briones F. Single Photon Emission from Site Controlled In As Quantum Dots Grown on GaAs(001) Patterned Substrates // ACSNano. 2009. Vol. 3, № 6. P. 1513–1517.

6. Kalliakos S., Pellegrini V., Garcia C. P. Optical Control of Energy-Level Structure of Few Electrons in AlGaAs/ GaAs Quantum Dots // Nano Lett. 2008. Vol. 8, № 2. P. 577–581.

7. Justo Y., Moreels I., Lambert K., Hens Z. Langmuir– Blodgett monolayers of colloidal lead chalcogenide quantum dots : morphology and photoluminescence // Nanotechnology. 2010. Vol. 21. P. 295606–295612.

8. Lotito V., Zambelli T. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confi nement and Water Discharge // Langmuir. 2016. Vol. 32. P. 9582–9590.

9. Lambert K., Wittebrood L., Moreels I., Deresmes D., Grandidier B., Hens Z. Langmuir–Blodgett monolayers of InP quantum dots with short chain ligands // J. of Colloid and Interface Sci. 2006. Vol. 300, № 2. P. 597–602.

10. Xu J., Ji X., Gattas-Asfura K. M., Wang C., Leblanc R. M. Langmuir and Langmuir–Blodgett fi lms of quantum dots // Colloids and Surfaces A : Physicochem. Eng. Aspects. 2006. Vol. 284–285. P. 35–42.

11. Cheyne R. B., Moffi tt M. G. Controllable Organization of Quantum Dots into Mesoscale Wires and Cables via Interfacial Block Copolymer Self-Assembly // Macromolecules. 2007. Vol. 40. P. 2046–2057.

12. Gorbachev I. A., Goryacheva I. Y., Brezesinski G., Gluhovskoy E. G. The study of the formation of monolayers of quantum dots at different temperatures // Proc. SPIE 9917. Saratov Fall Meeting 2015 : Third Intern. Symp. on Optics and Biophotonics and Seventh FinnishRussian Photonics and Laser Symp. (PALS) 99171J. Saratov, 2016. DOI: 10.1117/12.2228455

13. Gorbachev I. A., Shtykov S. N., Brezesinski G., Glukhovskoy E. G. Studying of Quantum Dot s Langmuir Monolayers Stability at the Different Subphase Temperature // BioNanoScience. 2017. Vol. 7, № 4. P. 686–691. DOI: 10.1007/s12668-017-0404-4

14. Gole A., Jana N. R., Selvan S. T., Ying J. Y. LangmuirBlodgett Thin Films o f Quantum Dots: Synthesis, Surface Modifi cation, and Fluorescence Resonance Energy Transfer (FRET) Studies // Langmuir. 2008. Vol. 24. P. 8181–8186.

15. Constantino C. J. L., Lemma T., Antunes P. A., Aroca R. Single-Molecule Detection Us ing SurfaceEnhanced Resonance Raman Scattering and LangmuirBlodgett Monolayers // Anal. Chem. 2001. Vol. 73. P. 3674–3678.

16. Speranskaya E. S., Beloglazova N. V., Lenain P., De Saeger S., Wang Z., Zhang S., Hens Z., Knopp D., Potapkin D. V., Goryacheva I. Y. Polymer-coated fl uorescent CdSe -based quantum dots for application in immunoassay // Biosensors and Bioelectronics. 2014. Vol. 53. P. 225–231.

17. Gorbachev I. A., Glukhovskoy E. G. The depending of Langmuir monolayers of quantum dots and fatty acid mixture properties from their components ratio // Proc. SPIE 10336, Saratov Fall Meeting 2016 : Opti cal Technologies in Biophysics and Medicine XVIII, 1033603. Saratov, 2017. DOI: 10.1117/12.2269372

Short text (in English): 
Full text (in Russian):