Cite this article as:

Petrov S. V., Kupryashina M. A., Glinskaya E. V., Nikitina V. E., Ponomarova E. G., Vorobyova S. A. Screening of Genus Azospirillum for their Ability to Produce Extracellular Lignin-Peroxidase and the Degradation of Model Lignin Compounds and Azo Dyes. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2017, vol. 17, iss. 2, pp. 170-176. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Screening of Genus Azospirillum for their Ability to Produce Extracellular Lignin-Peroxidase and the Degradation of Model Lignin Compounds and Azo Dyes


Lignin peroxidase is one of the main enzymes of fungi decomposers of wood, that is capable to many non-specific oxidation of aromatic and polycyclic compounds. By the beginning of our research there were virtually no data of the bacteria’s ability to produce the lignin peroxidase. Rather recently lignin peroxidase activity was detected by us in the washouts from the surface of the bacterial cells and in intracellular extracts of bacteria from genus Azospirillum. In this study, 6 strains of bacteria of the genus Azospirillumwas screened by their ability to produce extracellular lignin peroxidase, and by the potential of these microorganisms to the degradation of lignin model compounds and azo dyes. The enzyme activity in the culture fluid was determined by oxidation of veratryl alcohol to veratric aldehyde. Lignin-degrading capacity of the bacteria was determined by the method of Ahmad, using preparations of nitrided lignin. In the study of the bacteria of the genus Azospirillum by their ability to degrading the synthetic dyes, the methyl orange was selected as a model of the azo dye. The study found production of extracellular lignin peroxidase from all strains of bacteria of the genus Azospirillum taken in the experiment. As a result of screening revealed Azospirillum ability to degradation of lignin model compounds. For the first time discovered the ability of bacteria of the genus Azospirillum to the destruction of azo dyes. In most cases showed positive correlation between the level of activity of extracellular lignin peroxidase and ability to degradation of lignin model compounds and aromatic complex dyes.


1. Pasti-Grigsby M. B., Paszczynski A., Goszczynski S., Crawford D. L., Crawford R. L. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium // Appl. Environ. Microbiol. 1992. Vol. 38. P. 3605–3613
2. Ramachandra M., Crawford D. L., Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus // Appl. Environ. Microbiol. 1988. Vol. 54, № 12. P. 3057–3063.
3. Kalyani D. C., Patil P. S., Jadhav J. P., Govindwar S. P. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1 // Bioresour Technol. 2008. Vol. 99. P. 4635–4641.
4. Никитина В. Е., Ветчинкина Е. П., Пономарева Е. Г., Гоголева Ю. В. Фенолоксидазная активность бактерии рода Azospirillum // Микробиология. 2010. Т. 79, № 3. С. 344–351.
5. Bholay A. D., Borkhataria Bhavna V., Jadhav Priyanka U., Palekar Kaveri S., Dhalkari Mayuri V., Nalawade P. M. Bacterial lignin peroxidase : A tool for biobleaching and biodegradation of industrial effluents // Univ. J. Environ. Res. Technol. 2012. Vol. 2, № 1. P. 58–64.
6. Orth A. B., Royse D. J., Tien M. Ubiquity of lignindegrading peroxidases among various wood-degrading fungi // Appl. Envir. Microb. 1993. Vol. 59, № 12. P. 4017 – 4023.
7. Bradford M. M. A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 72. P. 248–254.
8. Ahmad M., Taylor C. R., Pink D., Burton K., Eastwood D., Bending G. D., Bugg T. D. H. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders // Mol. Biosyst. 2010. № 6. P. 815–821.
9. Pourbabaee A. A., Malekzadeh F., Sarbolouki M. N., Mohajeri A. Decolorization of methyl orange (As a model azo dye) by the newly discovered Bacillus sp. // Iranian J. Chem. Eng. 2005. Vol. 24. P. 41–45.
10. Nidadavolu S. V. S. S. S. L. H. B., Gudikandula K., Pabba S. K., Maringanti S. C. Decolorization of triphenyl methane dyes by Fomitopsis feei // Natural Science. 2013. Vol. 5,
№ 6. P. 30–35.
11. Ахмедова З. Р. Лигнинолитические ферменты базидиальных грибов. Лигнин-пероксидазы гриба Pleurotus ostreatus УзБИ-ZAX 108. Выделение, очистка и характеристика изоферментов // Биохимия. 1996. Т. 61, № 8. С. 1385 –1394.
12. Никитина В. Е., Купряшина М. А., Петров С. В., Глинская Е. В. Влияние условий культивирования на лигнин-пероксидазную активность эндофитного и эпифитного штаммов Azospirillum brasilense // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2012. Т. 12, вып. 4. С. 52–56.
13. Ильина Г. В. Эколого-физиологический потенциал природных изолятов ксилотрофных базидиомицетов : дис. … д-ра биол. наук. Саратов, 2011. 364 с.
14. Schloter M., Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain specific monoclonal antibodies // Symbiosis. 1998. Vol. 25. P. 159 –179.
15. Далимова Г. Н., Абдуазимов Х. А. Лигнины травянистых растений // Химия природных соединений. 1994. № 2. С. 160–177.


Short text (in English): 
Full text (in Russian):