Cite this article as:

Bayburdov T. А., Shmakov S. L. Polymeric Sorbents for the Collection of Oil and Oil Products from the Surface of Reservoirs: a 2000–2017 Review of the English-language Literature (Part 2). Izvestiya of Saratov University. New series. Series: Chemistry. Biology. Ecology, 2018, vol. 18, iss. 2, pp. 145-153. DOI: https://doi.org/10.18500/1816-9775-2018-18-2-145-153


Heading: 
UDC: 
665.61
Language: 
Russian

Polymeric Sorbents for the Collection of Oil and Oil Products from the Surface of Reservoirs: a 2000–2017 Review of the English-language Literature (Part 2)

Abstract

Oil spills after tanker and pipeline accidents pose a serious threat to the environment, lead to the loss of energy carriers and severely pollute seawater. Mechanical extraction by sorption mechanism is an effective means of oil spill liquidation from the surface of reservoirs. The English 2000–2017 scientific and technical literature devoted to the design of sorbents based on polymeric materials for the collection (absorption) of spilled oil and oil products from the surface of reservoirs with the possibility of subsequent recovery of the useful product was searched and analyzed. The second part of our review is devoted to lesser-known polymeric sorption materials (polypropylene, polystyrene, styrene copolymers, polyurethane, melamine-formaldehyde resins, polyalkoxysilanes, chitosan, petrogels, polyacrylamide, and some polymers used to modify inorganic substrates – polyvinylpyrrolidone, polyurethane-polydimethylsiloxane, polytetrafluoroethylene), the characteristics of these sorbents are given. The maximum sorption capacity for these materials is as follows: 158 g/g for oil (UFC foam based on poly(melamine formaldehyde)), 160 g/g (polyurethane sponge covered with graphene oxide) and 163 g/g for chloroform (superhydrophobic silanized melamine sponge). The prospects of using the sorbents of these classes for cleaning the surfaces of reservoirs from oil spills and oil products are estimated.

References

1. Teas Ch., Kalligeros S., Zanikos F., Stoumas S., Lois E., Anastopoulos G. Investigation of the effectiveness of absorbent materials in oil spills clean up // Desalination. 2001. Vol. 140, № 3. P. 259–264. 

2. Wei Q. F., Mather R. R., Fotheringham A. F., Yang R. D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery // Marine Pollution Bull. 2003. Vol. 46, № 6. P. 780–783. 

3. Rengasamy R. S., Das D., Karan C. P. Study of oil sorption behavior of fi lled and structured fi ber assemblies made from polypropylene, kapok and milkweed fi bers // J. Hazardous Materials. 2011. Vol. 186, № 1. P. 526–532. 

4. Tu C.W., Tsai C. H., Wang C. F., Kuo S. W., Chang F. C. Fabrication of superhydrophobic and superoleophilic polystyrene surfaces by a facile one-step method // Macromolecular Rapid Comm. 2007. Vol. 28, № 23. P. 2262–2266. 

5. Lin J., Shang Y., Ding B., Yang J., Yu J., Al-Deyab S. S. Nanoporous polystyrene fi bers for oil spill cleanup // Marine Pollution Bull. 2012. Vol. 64, № 2. P. 347–352. 

6. Wu J., Wang N., Wang L., Dong H., Zhao Y. Electrospun porous structure fi brous fi lm with high oil adsorption capacity // ACS Appl. Materials & Interfaces. 2012. Vol. 4, № 6. P. 3207–3212. 

7. Zhou X.-M., Chuai C.-Z. Synthesis and Characterization of a Novel High-Oil-Absorbing Resin // J. Appl. Polym. Sci. 2010. Vol. 115. P. 3321–3325. 

8. Zhu H., Qiu S., Jiang W., Wu D., Zhang C. Evaluation of electrospun polyvinyl chloride/polystyrene fi bers as sorbent materials for oil spill cleanup // Env. Sci. & Technol. 2011. Vol. 45, № 10. P. 4527–4531. 

9. Yuan X., Chung T.C.M. Novel solution to oil spill recovery: using thermodegradable polyolefi n oil superabsorbent polymer (oil–SAP) // Energy & Fuels. 2012. Vol. 26, № 8. P. 4896–4902. 

10. Zhang N., Zhong S., Zhou X., Jiang W., Wang T., Fu J. superhydrophobic P (St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery // Chemical Engineering Journal. 2016. Vol. 298. P. 117–124. 

11. Xu N., Cao J., Lu Y. The electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent // SpringerPlus. 2016. Vol. 5, № 1. P. 1383. 

12. Liu Y., Ma J., Wu T., Wang X., Huang G., Liu Y., Qiu H., Li Y., Wang W, Gao J. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly effi cient and reusable oil-absorbent // ACS Appl. Materials & Interfaces. 2013. Vol. 5, № 20. P. 10018–10026. 

13. Pham V. H., Dickerson J. H. Superhydrophobic silanized melamine sponges as high effi ciency oil absorbent materials // ACS Appl. Materials & Interfaces. 2014. Vol. 6, № 16. P. 14181–14188. 

14. Yang Y., Deng Y., Tonga Z., Wang C. Multifunctional foams derived from poly (melamine formaldehyde) as recyclable oil absorbents // J. Materials Chem. A. 2014. Vol. 2, № 26. P. 9994–9999. 

15. Khosravi M., Azizian S. Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup // ACS Appl. Materials & Interfaces. 2015. Vol. 7, № 45. P. 25326–25333.

16. Guźlińska E., Kończewicz W., Otremba Z., Trojnar D. Test of the suitability of chosen materials in terms of their use for removing oil spillage from the water environment // J. KONES. 2016. Vol. 23, № 3. P. 171–176. 

17. Pinto J., Athanassiou A., Fragouli D. Effect of the porous structure of polymer foams on the remediation of oil spills // J. Phys. D : Appl. Phys. 2016. Vol. 49, № 14. P. 145601.

18. Zhang L., Xu L., Sun Y., Yang N. Robust and Durable Superhydrophobic Polyurethane Sponge for Oil/Water Separation // Industrial & Eng. Chem. Res. 2016. Vol. 55, № 43. P. 11260–11268. 

19. Zhang A., Chen M., Du C., Guo H., Bai H., Li L. Poly (dimethylsiloxane) Oil Absorbent with a three-dimensionally interconnected porous structure and swellable skeleton // ACS Appl. Materials & Interfaces. 2013. Vol. 5, № 20. P. 10201–10206. 

20. Aydin G. O., Sonmez H. B. Hydrophobic poly (alkoxysilane) organogels as sorbent material for oil spill cleanup // Marine Pollution Bull. 2015. Vol. 96, № 1. P. 155–164. 

21. Kizil S., Karadag K., Aydin G.O., Sonmez H.B. Poly (alkoxysilane) reusable organogels for removal of oil/organic solvents from water surface // J. Environ. Management. 2015. Vol. 149. P. 57–64. 

22. Aydin G. O., Sonmez H. B. Organic–inorganic hybrid gels for the selective absorption of oils from water // Environ. Sci. Pollut. Res. 2016. Vol. 23. P. 11695–11707. 

23. Li A., Lin R., Lin C., He B., Zheng T., Lu L., Cao Y. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion // Carbohydr. Polym. 2016. Vol. 148. P. 272–280. 

24. Nam C., Li H., Zhang G., Chung T.C.M. Petrogel : new hydrocarbon (oil) absorbent based on polyolefi n polymers // Macromolecules. 2016. Vol. 49, № 15. P. 5427–5437.

25. Aalaie J., Vasheghani-Farahani E., Semsarzadeh M. A., Rahmatpour A. Gelation and swelling behavior of semiinterpenetrating polymer network hydrogels based on polyacrylamide and poly(vinyl alcohol) // J. Macromol. Sci. Part B : Physics. 2008. Vol. 47, № 5. P. 1017–1027. 

26. Ou R., Wei J., Jiang L., Simon G. P., Wang H. Robust thermo-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for effi cient oil-water separation // Environ. Sci. Technol. 2016. Vol. 50, № 2. P. 906–914. 

27. Faibish R. S., Cohen Y. Fouling-resistant ceramic-supported polymer membranes for ultrafi ltration of oil-in-water microemulsions // J. Membrane Sci. 2001. Vol. 185, № 2. P. 129–143. 

28. Feng L., Zhang Z., Mai Z., Ma Y., Liu B., Jiang L, Zhu D. A super-hydrophobic and super-oleophilic coating mesh fi lm for the separation of oil and water // Angew. Chem. Intern. Ed. 2004. Vol. 43. P. 2012 –2014. 

29. Su C., Xu Y., Zhang W., Liu Y., Li J. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water // Appl. Surf. Sci. 2012. Vol. 258, № 7. P. 2319–2323. 

30. Palchoudhury S., Lead J. R. A facile and cost-effective method for separation of oil–water mixtures using polymer-coated iron oxide nanoparticles // Environ. Sci. & Technol. 2014. Vol. 48, № 24. P. 14558–14563. 

31. Elanchezhiyan S.S.D., Sivasurian N., Meenakshi S. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method // Carbohydr. Polym. 2016. Vol. 145. P. 103–113. 

32. Soares S.F., Rodrigues M.I., Trindade T., Daniel-daSilva A. L. Chitosan-silica hybrid nanosorbents for oil removal from water // Coll. & Surf. A : Physicochem. Eng. Aspects. 2017. Vol. 532. P. 305–313. 

33. Atta A. M., El-Hamouly S. H., Al Sabagh A. M., Gabr M. M. Crosslinking of reactive a-olefins and maleic anhydride copolymers as oil sorbers // J. Appl. Polym. Sci. 2007. Vol. 104. P. 871–881. 

34. Atta A. M., El-Hamouly S. H., Al Sabagh A. M., Gabr M.M. Crosslinked poly(octadecene-alt-maleic anhydride) copolymers as crude oil sorbers // J. Appl. Polym. Sci. 2007. Vol. 105. P. 2113–2120. 

35. Chen X., Liang Y. N., Tang X.-Z., Shen W., Hu X. Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption // Chem. Eng. J. 2017. Vol. 308. P. 18–26. 

36. Yati I., Aydin G. O., Sonmez H. B. Cross-linked poly(tetra hydrofuran) as promising sorbent for organic solvent/oil spill // J. Hazardous Materials. 2016. Vol. 309. P. 210–218.

Short text (in English): 
Full text (in Russian):