Cite this article as:

Svetlakova A. V., Tuchina E. S. Photocatalytic effect of led radiation (405 nm) and new Al2O3 3D-nanocomposites on the growth of Staphylococcus aureus. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2021, vol. 21, iss. 2, pp. 185-189. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Photocatalytic effect of led radiation (405 nm) and new Al2O3 3D-nanocomposites on the growth of Staphylococcus aureus

Тип статьи для РИНЦ: 
RAR научная статья

The progressive growth of bacterial resistance to antibiotic drugs requires the creation of highly efficient nanomaterials. Aluminum oxide is a stable non-toxic semiconductor material; however, the photocatalytic properties of its modifications in relation to microorganisms are not well understood. In this study, we used new 3D composites of aluminum oxyhydroxide (Al2O3 × nH2O) in three modifications (γ, α and θ), which are a mesh of 150 nm nanofibrils. The assessment of the photocatalytic antibacterial properties of the composites was carried out on the museum strain S. aureus 209 P. It was shown that, in combination with violet LED radiation (405 nm, 17 mW/cm2 ), the composites under study significantly suppress bacterial growth (from 65 to 89%), with the sample containing γ-Al2O3 showing the best result.

  1. Singh R., Smitha M. S., Singh S. P. The role of nanotechnology in combating multi-drug resistant // J. Nanosci. Nanotechnol. 2014. Vol. 14, № 7. Р. 4745–4756.
  2. Vance M. E., Kuiken T., Vejerano E. P., McGinnis S. P., Hochella M. F., Rejeski D., Hull M. S. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory // Beilstein J. Nanotechnol. 2015. Vol. 6. P. 1769–1780. DOI:
  3. Kim I.-S., Baek M., Choi S.-J. Comparative Cytotoxicity of Al2O3, CeO2, TiO2 and ZnO Nanoparticles to Human Lung Cells // J. of Nanosci. and Nanotech. 2010. Vol. 10, № 5. P. 3453–3458. DOI:
  4. Siroka P., Augustyniak A., Cendrowski K., Nawrotek P. Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Рис. 2. Схема протекания фотокаталитических процессов с участием нанокомпозитов Al2O3 Fig. 2. Diagram of photocatalytic processes with the participation of nanocomposites Al2O3 Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials // Nanomaterials. 2018. Vol. 8, № 4. P. 212–220. DOI:
  5. Prabhakar P. V., Reddy U. A., Singh S. P., Balasubramanyam A., Rahman M. F., Indu Kumari S., Agawane S. B., Murty U. S. N., Grover P., Mahboob M. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats // J. Appl. Toxicol. 2015. Vol. 32. P. 436–445. DOI:
  6. Priyanka G., Ciara B., Ailish B., Suresh C. P. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances // Applied Catalysis B: Environmental. 2018. Vol. 225. P. 51–75. DOI: 10.1016/j.apcatb.2017.11.018
  7. Levin I., Brandon D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences // J. of the Amer. Ceramic Society. 2005. Vol. 81, iss. 8. P. 1995–2012. DOI:
  8. Rozita Y., Brydson R., Scott А. An investigation of commercial gamma-Al2O3 nanoparticles // J. of Phys.: Conference Series. 2009. Vol. 241. P. 1–5.
  9. Lozhkomoev A. S., Kazantsev S. O., Pervikov V., Fomenko N., Gotman I. A new approach to production of antimicrobial Al2O3-Ag nanocomposites by electrical explosion of two wires // Materials Research Bulletin. 2019. Vol. 2019. P. 1–7.
  10. Li B., Yuan Н., Yi В., Zhang Y. Fabrication of the composite nanofi bers of NiO/γ-Al2O3 for potential application in photocatalysis // Ceramics International. 2016. Vol. 42, № 15. P. 17405–17409.
  11. Parham S., Wicaksono D., Nur H. A proposed mechanism of action of textile/Al2O3–TiO2 bimetal oxide nanocomposite as an antimicrobial agent // The Journal of the Textile Institute. 2018. Vol. 110, № 5. P. 791–798
  12. Jia Z., Nadtochenko V., Radzig M. A., Khmel I. A., Zavilgelsky G., Azouani R., Kanaev A. Antibacterial activity of monolayer nanoparticulate AgN-(titanium-oxo-alkoxy) coatings // Mechanics & Industry. 2016. Vol. 17, № 5. P. 1–6.
  13. Jie L., Changcheng L., Aizeng M., Zhijian D., Huidong Z. Infl uence of Dechlorination Temperature on Propane Dehydrogenation over Pt-θ-Al2O3 // China Petroleum Processing and Petrochemical Technology. 2018. Vol. 20, № 4. Р. 1–7.
  14. Khodan A. N., Nguyen T. H. N., Esaulkov M., Kiselev R., Amamra M., Vignes J.-L., Kanaev A. Porous monoliths consisting of aluminum oxyhydroxide nanofi brils : 3D structure, chemical composition, and phase transformations in the temperature range 25–1700 °C // J. Nanopart. Res. 2018. Vol 2, iss. 7. DOI:
  15. Khodan A. N., Baranchikov A. E., Utochnikova V. V., Simonenko N. P., Beltiukov A. N., Petukhov D. I., Kanaev A., Ivanov V. K. Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modifi ed with tris(8-hydroxyquinolinato)aluminium // Microporous and Mesoporous Materials. 2019. Vol. 293. P. 291–302.
  16. Tartari A., Amamra M., Nguyen T. H. N., Piat M., Favero I., Ducci S., Khodan A., Boinovich L. B., Emelyanenko A. M., Kanaev A., Leo G. Ultra-porous alumina for applications in microwave planar antennas // Advanced Device Materials. 2016. Vol. 1, № 4. Р. 93–99.
  17. Köerich J. S., Diego José Nogueira D. J., Vaz V. P., Carmen Simioni C., Da Silva M. L. N., Ouriques L. C., Vicentini D. S., Matias W. G. Toxicity of binary mixtures of Al2O3 and ZnO nanoparticles toward fi broblast and bronchial epithelium cells // Journal of Toxicology and Environmental Health, Part A. 2020. P. 1. DOI:
  18. Ansari M. A., Khan H. M., Alzohairy M. A., Jalal M., Ali S. G., Pal R., Mussarat J. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa // World J. Microbiol. Biotechnol. 2014. Vol. 31. P. 153. DOI:
  19. Bouslama M., Amamra M. C., Jia Z., Amar M. B., Brinza O., Chhor K., Abderrabba M., Vignes J.-L., Kanaev A. Nanoparticulate TiO2−Al2O3 Photocatalytic Media: Effect of Particle Size and Polymorphism on Photocatalytic Activity // ACS Catal. 2012. Vol. 2, № 9. P. 1884. DOI:
  20. Nosaka Y., Nosaka A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis // Chem. Rev. 2017. Vol. 117. P. 11302−11336. DOI:
Short text (in English): 
Full text (in Russian):