Cite this article as:

Duarte Torres E. N., Abdurashitov A. S., Namykin A. A., Shirokov A. A., Shushunova N. A., Sarantseva E. I., Semyachkina-Glushkovskaya O. V. Lymphatic Meningeal Role in Processes of Brain Clearing: in vivo Visualization. Izvestiya of Saratov University. New series. Series: Chemistry. Biology. Ecology, 2018, vol. 18, iss. 4, pp. 433-438. DOI: https://doi.org/10.18500/1816-9775-2018-18-4-433-438


Heading: 
UDC: 
612.42
Language: 
Russian

Lymphatic Meningeal Role in Processes of Brain Clearing: in vivo Visualization

Abstract

In the experiments on rats, Evans Blue dye and gold nanorods were injected into the brain parenchyma, followed by visualization with optical coherent tomography and a fluorescent microscopy. The results showed that meningeal lymphatics play an important role in the brain clearing, using markers introduced into the tissues. It has been shown that the deep cervical lymph node is the first anatomical “station” for the outflow of fluid from the brain. The data obtained shed light on the lymphatic mechanisms underlying the drainage and clearing of brain functions.

References

1. Mascagni P., Bellini G. B. Istoria completa dei vasi linfatici. Italy, Florence, 1816. Vol. 2. 195 p.

2. Lukić I. K., Glunčić V., Ivkić, G., Hubenstorf M., Marušić A. Virtual dissection : a lesson from the 18th century // The Lancet. 2003. Vol. 362, № 9401. P. 2110‒2113.

3. Louveau A., Smirnov I., Keyes T. J., Eccles J. D., Rouhani S. J., Peske J. D., Harris T. H. Structural and functional features of central nervous system lymphatic vessels // Nature. 2015. Vol. 523, № 7560. P. 337.

4. Aspelund A., Antila S., Proulx S. T., Karlsen T. V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fl uid and macromolecules // J. of Exp. Med. 2015. Vol. 212, № 7. P. 991‒999.

5. Iliff J. J., Wang M., Liao Y., Plogg B., Peng W., Gundersen G. A., Benveniste H., Vates G. E., Deane R., Goldman S. A., Nagelhus E. A., Nedergaard M. A paravascular pathway facilitates CSF fl ow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β // Sci. Translat. Med. 2012. Vol. 4, № 147. P. 147.

6. Jessen N. A., Munk A. S., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide // Neurochem. Res. 2015. Vol. 40, № 12. P. 2583‒2599.

7. Virchow R. Ueber die Erweiterung kleinerer Gefäfse // Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1851. Vol. 3, № 3. P. 427‒462.

8. Robin C. Recherches sur quelques particularites de la structure des capillaires de l’encephale // J. Physiol. Homme. Anim. 1859. Vol. 2. P. 537‒548.

9. Nakada T. Virchow-Robin space and aquaporin-4 : new insights on an old friend // Croatian Med. J. 2014. Vol. 55, № 4. P. 328‒336.

10. Prasad S., Sajja R. K., Naik P., Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction : an overview // J. of Pharmacovigilance. 2014. Vol. 2, № 2. P. 125.

11. Haley M. J., Lawrence C. B. The blood–brain barrier after stroke : Structural studies and the role of transcytotic vesicles // J. of Cerebral Blood Flow & Metabolism. 2017. Vol. 37, № 2. P. 456‒470.

12. Setiadi A., Korim W. S., Elsaafi en K., Yao S. The role of the blood–brain barrier in hypertension // Exper. Physiol. 2018. Vol. 103, № 3. P. 337‒342.

13. Yamazaki Y., Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease // Intern. J. of Mol. Sci. 2017. Vol. 18, № 9. P. 1965.

14. Khlebtsov B. N., Khanadeev V. A., Ye J., Sukhorukov G. B., Khlebtsov N. G. Overgrowth of gold nanorods by using a binary surfactant mixture // Langmuir. 2014. Vol. 30, № 6. P. 1696‒1703.

15. Ye X., Zheng C., Chen J., Gao Y., Murray C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods // Nano Lett. 2013. Vol. 13, № 2. P. 765‒771.

16. Lichtman J. W., Conchello J. A. Fluorescence microscopy // Nature Methods. 2005. Vol. 2, № 12. P. 910.

17. Cserr H. F., Harling Berg C. J., Knopf P. M. Drainage of brain extracellular fl uid into blood and deep cervical lymph and its immunological signifi cance // Brain Pathology. 1992. Vol. 2, № 4. P. 269‒276.

18. Semyachkina-Glushkovskaya O., Abdurashitov A., Dubrovsky A., Bragin D., Bragina O., Shushunova N., Maslyakova G., Navolokin N., Bucharskaya A., Tuchin V., Kurths J., Shirokov A. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood–brain barrier: mechanisms of brain clearing // J. of Biomed. Optics. 2017. Vol. 22, № 12. P. 12.

19. Semyachkina-Glushkovskaya O., Chehonin V., Borisova E., Fedosov I., Namykin A., Abdurashitov A., Shirokov A., Khlebtsov B., Lyubun Y., Navolokin N., Ulanova M., Shushunova N., Khorovodov A., Agranovich I., Bodrova A., Sagatova M., Shareef A., Saranceva E., Iskra T., Dvoryatkina M., Zhinchenko E., Sindeeva O., Tuchin V., Kurths J. Photodynamic opening of the blood-brain barrier and pathways of brain clearing // J. of Biophotonics. 2018. Vol. 11, № 11. DOI: https://doi.org/10.1002/jbio.201700287

20. Yamamoto T., Narushima M., Yoshimatsu H., Yamamoto N., Oka A., Seki Y., Todokoro T., Iida T., Koshima I. Indocyanine green velocity : lymph transportation capacity deterioration with progression of lymphedema // Ann. of Plastic Surgery. 2013. Vol. 71, № 5. P. 591‒594.

21. Absinta M., Ha S. K., Nair G., Sati P., Luciano N., Palisoc M., Louveau A., Zaghloul K., Pittaluga S., Kipnis J., Reich D. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI // Elife. 2017. Vol. 6. DOI: https://doi.org/10.7554/eLife.29738

Short text (in English): 
Full text (in Russian):