Cite this article as:

Пожаров М. В., Захарова Т. В. Корреляционный анализ констант диссоциации некоторых гидроксибензойных кислот. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2014, vol. 14, iss. 2, pp. 13-18. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Корреляционный анализ констант диссоциации некоторых гидроксибензойных кислот

Тип статьи для РИНЦ: 
RAR научная статья

Изучена геометрия и электронное строение молекул гидроксибензойных, в частности замещенных салициловых кислот, различными квантово-химическими методами. Найдена корреляция между энергией депротонирования и константой диссоциации карбоксильной группы для исследованных соединений.


1. Kwon Y. Theoretical study on salicylic acid and its analogues: intramolecular hydrogen bonding // J. of Molec. Structure (Theochem). 2000. Vol. 532. P. 227–237.

2. Boczar M., Boda L., Wojcik M. J. Theoretical modeling of infrared spectra of hydrogen-bonded crystals of salicylic acid // Spectrochim. Acta A. 2006. Vol. 64. P. 757–760.

3. Karabacak M., Kose E., Kurt M. FT-Raman, FT-IR spectra and DFT calculations on monomeric and dimeric structures of 5-fluoro- and 5-chloro-salicylic acid // J. Raman Spectrosc. 2010. Vol. 41 P. 1085–1097.

4. Castro J. L., Arenas J. F., López Ramírez M. R, Peláez D., Otero. J. C. Surface-enhanced Raman scattering of hydroxybenzoic acids adsorbed on silver nanoparticles // J. Colloid and Interface Science. 2009. Vol. 332, iss. 1. P. 130–135.

5. Khan I. M., Ahmad A., Ullah M. F. Synthesis, spectroscopic investigations, antimicrobial and DNA binding studies of a new charge transfer complex of o-phenylenediamine with 3,5-dinitrosalicylic acid // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013. Vol. 102. P. 82–87.

6. Kantouch A., El Sayed A. A., Salama M., El Kheir A. A., Mowafi S. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric // Intern. J. of Biological Macromolecules. 2013. Vol. 62. P. 603–607.

7. Wen P., Chen J., Wan S., Kong W., Zhang P., Wang W., Zhan J., Pan Q., Huang W. Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress // Plant Growth Regul. 2008. Vol. 55, iss. 1. P. 1–10.

8. Singh Y. P., Das R., Singh R. A. Numerical simulation of the internal vibrations of COOH group in amino-salicylic acids // Afr. J. Biochem. 2007. Vol. 1 (2). P. 19–23.

9. Zhang S., Baker J., Pulay P. A Reliable and Effi cient First Principles-Based Method for Predicting pKa Values. 1. Methodology // J. Phys. Chem. A 2010. Vol. 114. P. 425–431.

10. Klamt A., Schüürmann G. COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient // J. Chem. Soc., Perkin Transactions 2. 1993. Iss. 5. P. 799–805.

11. De Proft F., Amira S., Choho K., Geerlings P. Quantumchemical Study of the Acidity of Substituted Acetic Acids with Density Functional Theory based Descriptors //J. Phys. Chem. 1994. Vol. 98 (20). P. 5227–5233.

12. De Proft F., Langenaeker W., Geerlings P. Acidity of Alkyl Substituted Alcohols: Are Alkyl Groups Electron-Donating or Electron-Withdrawing? // Tetrahedron. 1995. Vol. 51. P. 4021–4032.

13. Mendez F., Romero M. L., De Proft F., Geerlings P. p-Phenolic Nucleophiles Basicity and the Elimination-Substitution Ratio in Phenylethylbromide : A HSAB Theoretical Study //J. Org. Chem. 1998. Vol. 63 (17). P. 5774–5778.

14. Tielens F., Langenaeker W., Geerlings P. Ab initio study of the bridging hydroxyl acidity and stability in the 12-membered ring of zeolites // Theochem. 2000. Vol. 496. P. 153–162.

15. Choho K., Van Lier G., Van de Woude G., Geerlings P. Acidity of hydrofullerenes : a quantum chemical study // J. Chem. Soc. Perkin Transactions 2. 1996. Iss. 8. P. 1723–1732.

16. Yang W., Mortier W. J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines // J. Am. Chem. Soc. 1986. Vol. 108. P. 5708–5711.

17. Contreras R., Fuentealba P., Galvan M., Perez P. A direct evaluation of regional Fukui functions in molecules //Chem.Phys. Lett. 1999. Vol. 304. P. 405–413.

18. Perez P., Simon-Manso Y., Aizman A., Fuentealba P., Contreras R. Empirical Energy−Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity // J. Amer. Chem. Soc. 2000. Vol. 122. P. 4756–4762.

19. Perez P., Toro-Labbe A., Contreras R. Global and Local Analysis of the Gas-Phase Acidity of Haloacetic Acids //J. Phys. Chem. A. 2000. Vol. 104. P. 5882–5887.

20. Klamt A., Eckert F., Diedenhofen M., Beck M. First Principles Calculations of Aqueous pKa Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pKa Scale // J. Phys. Chem. A. 2003. Vol. 107. P. 9380–9386.

21. Adam K. R. New Density Functional and Atoms in Molecules Method of Computing Relative pKa Values in Solution // J. Phys. Chem. A. 2002. Vol. 106. P. 11963–11972.

22. Dewar M., Zoebisch E., Healy E., Stewart J. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model // J. Amer. Chem. Soc. 1985. Vol. 107(13). P. 3902–3909.

23. Rocha G., Freire R., Simas A., Stewart J. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I // J. Comp. Chem. 2006. Vol. 27, iss. 10. P. 1101–1111.

24. Binkley J., Pople J., Hehre W. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for fi rst-row elements // J. Amer. Chem. Soc. 1980. Vol. 102. P. 939–947

25. Gordon M., Binkley J., Pople J., Pietro W., Hehre W. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements //J. Amer. Chem. Soc. 1982. Vol. 104. P. 2797–2803

26. Ditchfi eld R., Hehre W., Pople J. Self-Consistent Molecular Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules //J. Chem. Phys. 1971. Vol. 54, iss. 2. P. 724–729.

27. Hehre W., Ditchfi eld R., Pople J. Self–Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian–Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules // J. Chem. Phys. 1972. Vol. 56, iss. 5. P. 2257–2262.

28. Francl M., Pietro W., Hehre W., Binkley J., Gordon M., DeFrees D., Pople J. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements // J. Chem. Phys. 1982. Vol. 77. P. 3654–3666.

29. Handy N., Cohen A. Left-right correlation energy //J. Mol. Phys. 2001. Vol. 99. P. 403–412.

30. Lee C., Yang W., Parr R. Development of the ColleSalvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. 1988. Vol. 37, iss. 2. P. 785–790.

31. Becke A. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. Vol. 98, iss. 7. P. 5648–5653.

32. Alex A. Granovsky, Firefl y version 8.0. URL: www. refl y/index.html (дата обращения: 20.02.14).

33. Schmidt M., Baldridge K., Boatz J., Elbert S., Gordon M., Jensen J., Koseki S., Matsunaga N., Nguyen K., Su S., Windus T., Dupuis M., Montgomery J. General atomic and molecular electronic structure system //J. Comput. Chem. 1993. Vol. 14. P. 1347–1363. 

34. Mock W., Morsch L. Low barrier hydrogen bonds within salicylate mono-anions // Tetrahedron. 2001. Vol. 57. P. 2957–2964.

35. Баранова Т. А. Синтез и физико химическое исследование соединений редкоземельных элементов с ароматическими кислотами, содержащими амино и сульфогруппы : дис. … канд. хим. наук. Саратов, 1989. 36. CRC Handbook of Chemistry and Physics / Lide D. R. (ed.). 88th ed. CRC Press; Taylor and Francis, 2007. 2640 p.

37. Allgayer H., Sonnenbichler J., Kruis W., Paumgartner G. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coeffi cients of sulphasalazine and its metabolites // Arzneimittelforschung. 1985. Vol. 35(9). P. 1457–1459.


Full text (in Russian):