Cite this article as:

Mezhueva M. A., Danilina V. V., Kurskii V. F., Cherkasov D. G. Extractive Crystallization of Salt and Phase Equilibria in the Ternary System Sodium Nitrate – Water – Dipropylamine . Izvestiya of Saratov University. New series. Series: Chemistry. Biology. Ecology, 2019, vol. 19, iss. 4, pp. 401-414. DOI: https://doi.org/10.18500/1816-9775-2019-19-4-401-414


Heading: 
UDC: 
544.344.016+536.44:544.344.013-16-14+544.344.3
Language: 
Russian

Extractive Crystallization of Salt and Phase Equilibria in the Ternary System Sodium Nitrate – Water – Dipropylamine

Abstract

Phase equilibria in the ternary system sodium nitrate – water – dipropylamine where the constituent binary liquid system is characterized by a trend to form a lower critical solution temperature (LCST) were studied using the visual-polythermal method in the range −10.0–90.0° C. It was found that the introduction of sodium nitrate into the water – dipropylamine system led to a significant decrease in the mutual solubility of the components. Based on the polythermal data obtained isothermal phase diagrams of the studied ternary system were plotted at −10.0, −1.5, −1.9, 0.0, 0.9, 1.5, 5.0, 25.0, 50.0, and 90.0° C. The compositions of the liquid phases of the monotectic state were graphically determined and the distribution coefficients of dipropylamine between these phases were calculated at 10, 15, 20, 25, 30, 35, 40, 50, 60 and 90° C. Sodium nitrate was found to be an effective salting–out agent of dipropylamine in the range of 10–90° C. It was established that the effect of salting-out of dipropylamine from aqueous solutions with sodium nitrate amplifies with increasing temperature and takes on the maximum value (961.0) at 90° C. The effectiveness of the use of dipropylamine in extractive crystallization of sodium nitrate from its unsaturated aqueous solutions containing 43.0, 44.0, 45.0 and 46.0 wt.% of the salt in the range of 10–60° C was estimated. The dependences of the yield of solid sodium nitrate on the amount of dipropylamine introduced were found. It was established that the maximum yield of sodium nitrate (81%) was observed for the section containing 46 wt.% of the salt, at 90 wt. % of the introduced amine and 35.0° C. 

References
  1. Khimicheskaya entsiklopediya: v 5 t. [Chemical Encyclopedy: in 5 vols.]. Ed. by I. L. Knunyants. Moscow, Sov. Entsiklopediya Publ., 1988–1998), vols. 1–5 (in Russian).
  2. Pozin M. E. Tekhnologiya mineral’nykh soley: v 2 ch. [Technology of mineral salts: in 2 parts]. Leningrad, Khimiya Publ., 1974, part 2. 1547 p. (in Russian).
  3. Weingaertner D. A., Lynn S., Hanson D. N. Extractive Crystallization of Salts from Concentrated Aqueous Solution. Ind. Eng. Chem., 1999, vol. 30, no. 3, pp. 490–501. DOI: https://doi.org/10.1021/ie00051a009
  4. Zijlema T. G., Geertman R. M., Witkamp G.-J., van Rosmalen G. M., de Graauw J. Antisolvent Crystallization as an Alternative to Evaporative Crystallization for the Production of Sodium Chloride. Ind. Eng. Chem. Des., 2000, vol. 39, no. 5, pp. 1330–1337. DOI: https://doi.org/10.1021/ie990221h
  5. Zijlema T. G., Witkamp G. J., Rosmalen G. M. Liquid– Liquid and Solid–Liquid Equilibria of 2–Isopropoxyethanol – H2O – NaCl Mixture. J. Chem. Eng. Data, 1999, vol. 44, no. 6, pp. 1338–1340. DOI: https://doi.org/10.1021/je9900880
  6. Zijlema T. G. Crystallization of Sodium Chloride with Amines as Antisolvents. In: Separation and Purifi cation by Crystallization, 1997, chapter 19, pp. 230–241. DOI: 10.1021/bk–1997–0667.ch019
  7. Carton A., Bolado S., Marcos M. Liquid – Liquid Equilibria for Aqueous Solutions of Lithium Sulfate or Lithium Formate and Triethylamine or Diisopropylamine. J. Chem. Eng. Data, 2000, vol. 45, no. 2, pp. 260–264. DOI: https://doi.org/10.1021/je990235u
  8. Mydlarz J., Jones A., Millan A. Solubility and Density Isotherms for Potassium Sulfate – Water – 2-Propanol. J. Chem. Eng. Data, 1989, vol. 34, pp. 124–126. DOI: https://doi.org/10.1021/je00055a033
  9. Hu М., Zhai Q., Jiang Y., Liu Z. Solid–Liquid Phase Equilibria of Some Aliphatic Alcohols + Cesium Sulfate + + Water. J. Chem. Eng. Data, 2004, vol. 49, pp. 1070–1073. DOI: https://doi.org/10.1021/je049914h
  10. Zafarani-Moattar M. T., Alireza S. Phase diagrams of Aliphatic Alcohol + Magnesium Sulfate + Water. J. Chem. Eng. Data, 1997, vol. 42, pp. 1241–1243. DOI: https://doi.org/10.1021/je970060t
  11. Thompson A. R., Molstad M. C. Solubility and Density Isotherms potassium and ammonium nitrates in isopropanol solutions. Ind. Eng. Chem., 1945, vol. 37, no. 12, pp. 1244–1248. DOI: https://doi.org/10.1021/ie50432a031
  12. Hu M., Jin L., Jiang Y., Li S., Zhai Q. Solubility of Cesium Nitrate in Aqueous Alcohol Solutions at (25, 35, and 45)° C. J. Chem. Eng. Data, 2005, vol. 50, pp. 1361–1364. DOI: https://doi.org/10.1021/je050072b
  13. Cherkasov D. G., Il’in K. K. Рolythermal study of the salting–out of triethylamine from aqueous solutions with sodium nitrate. Russ. J. of Applied Chem., 2011, vol. 84, no. 3, pp. 388–394 (in Russian). DOI: https://doi.org/10.1134/S1070427211030098
  14. Hanson D. N., Lynn S. Method of Crystallizing Salts from Aqueours Solutions. U. S. Patent 4.879.042, 1989.
  15. Mezhueva M. A., Danilina V. V., Cherkasov D. G. Vliyanie nitrata natriya na fazovoe povedenie dvoynoy sistemy voda – dipropilamin v intervale −17.0–90.0° C [The effect of sodium nitrate on the phase behavior of the water – dipropylamine binary system in the range of −17.0–90.0° C]. Sovremennye problemy teoreticheskoi i eksperemental’noi khimii: mezhvuz. sb. nauch. tr. [Current Problems of Theoretical and Experimental Chemistry. Interuniv. Coll. of Sci. Papers]. Saratov, Saratovskiy istochnik, 2018, pp. 10–12 (in Russian).
  16. Smotrov M. P., Umetchikov V. A., Danilina V. V., Cherkasov D. G. Phase Equilibria and Component Solubility in the Binary System Water + Dipropylamine. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 4, pp. 378–382 (in Russian). DOI: https://doi.org/10.18500/1816-9775-2018-18-4-378-382
  17. Il'in K. K., Cherkasov D. G., Kurskiy V. F. Phase equilibria and critical phenomena in a sodium nitrate – water – diethylamine ternary system. Russ. J. of Phys. Chem. A., 2010, vol. 84, no. 3, pp. 370–374 (in Russian). DOI: https://doi.org/10.1134/S0036024410030052
  18. Anosov V. Ya., Ozerova M. I., Fialkov Yu. Ya. Osnovy fiziko-khimicheskogo analiza [Principles of Physicochemical Analysis]. Moscow, Nauka Publ., 1976. 504 p. (in Russian).
  19. Treibal R. Zhidkostnaya ekstraktsiya [Liquid Extraction]. Moscow, Khimiya Publ., 1966. 724 p. (in Russian).
  20. Cherkasov D. G., Kurskiy V. F., Il'in K. K. Topological transformation of the phase diagram for the ternary system cesium nitrate-water-acetonitrile. Russ. J. of Inorganic Chem., 2008, vol. 53, no. 1, pp. 139–145 (in Russian). DOI: https://doi.org/10.1134/S0036023608010208
  21. Pospelov A. A., Stepanenko E. K., Chukhlantsev V. G. Features of freezing of aqueous solutions of sodium nitrate near the eutectic point. Russ. J. Phys. Chem., 1969, vol. 43, no. 3, pp. 513–517 (in Russian).
  22. Kirgintsev A. N., Trushnikova L. N., Lavrent’eva V. G. Rastvorimost’ neorganicheskikh veschestv v vode [Solubility of Inorganic Substances in Water]. Leningrad, Khimiya Publ., 1972. 248 p. (in Russian).
  23. Spravochnik po rastvorimosti. Binarnye sistemy [Manual in Solubility: Binary Systems]. Ed. by V. V. Kafarov. Moscow, Leningrad, Akad. Nauk SSSR, 1963, vol. 1, books 1, 2. 1960 p. (in Russian).
  24. Hobson R. W., Hartman R. J., Kanning E. W. A Solubility Study of Di-n-propylamine. J. Am. Chem. Soc., 1941, vol. 63, pp. 2094–2095. DOI: https://doi.org/10.1021/ja01853a019
  25. Stephenson R. M. Mutual Solubility of Water and Aliphatic Amines. J. Chem. Eng. Data, 1993, vol. 38, no. 4, pp. 625–629. DOI: https://doi.org/10.1021/je00012a039
Full text (in Russian):