Cite this article as:

Pankratov A. N., Tsivileva O. M., Tsymbal O. A., Drevko Y. B., Tumskiy R. S., Marakaeva A. V. Exploration of Possibilities for Organic Selenides and Dihydroselenochromilium Salt Interaction with Diphenylpicrylhydrazyl. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 1, pp. 39-49. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Exploration of Possibilities for Organic Selenides and Dihydroselenochromilium Salt Interaction with Diphenylpicrylhydrazyl


Higher fungi – basidiomycetes play significant role as food and biological subjects for establishing the regularities of the living systems’ operation, development and response to the different-nature effectors impact. Insufficient activity of the living organisms’ antioxidant system interfering the ability of overcoming the negative consequences of oxidative stress (excessive level of free radicals in cells) is believed to be a reason for the organisms aging and death. For enhancing the sustainability of mushroom cultures to the oxidative stress, and for providing their adequate redox status in respect to cytodifferentiation and transition to the generative stage, antioxidants are utilized. Profound antioxidant properties are attributed to the compounds of selenium, which is also an essential microelement. One of the antioxidant action indicators is the antiradical activity determined by means of the reaction occurring with the participation of stable free radical diphenylpicrylhydrazyl (DPPH) (C6H5)2N–N•–C6H2(NO2)3-2,4,6. Another important antioxidant activity rate is the lipid peroxidation (LPO) level assessed by the reaction the reaction with thiobarbituric acid. In view of toxicity of inorganic selenium compounds, just the organoselenium ones are promising as the antioxidant and microelement supplementations at the basidiomycetes cultivation. With a view to future testing of the aforesaid compounds as a kind of supplement, their own possible interaction with DPPH and TBA must be explored to take that into account. That is why the implementation of reference reactions between the organoselenium compounds and DPPH should be provided. The present work is aimed to clarify the possibilities of interaction of three organic selenides and dihydroselenochromilium salt with DPPH. Conventional determination techniques for the antiradical activity and LPO level have been adjusted to the research goal. By means of spectrophotometric method involving quantum chemical computations at a B3LYP/6-311++G(d,p) level of theory, and NBO-analysis, we studied a number of organoselenium and model compounds interaction with DPPH and TBA. It has been shown that diacetophenonylselenide C6H5COCH2SeCH2COC6H5 barely inhibits DPPH. The inhibition level is rather high with 2-(4-bromophenyl)-4-phenyl-7,8-benzo-5,6-dihydro-4Н-selenochromene, and especially with 2,4-diphenyl-7,8-benzo-5,6-dihydroselenochromilium perchlorate. Considerable extent of inhibition of the latter salt could be related to the activation of methylene groups in organoelement cation on account of positive charge acquisition by heteroring. The mixture of organoselenium (diacetophenonylselenide, dihydroselenochromenes, dihydroselenochromilium salt) or model compound with TBA does not yield any products with the absorbance bands in the visible spectrum region.


1. Vertuani S., Angusti A., Manfredini S. The Antioxidants and Pro-Antioxidants Network: An Overview. Current Pharmaceutical Design, 2004, vol. 10, no. 14, pp. 1677‒1694. DOI:

2. Apel K., Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev. Plant Biol., 2004, vol. 55, pp. 373‒399. DOI:

3. Mishra V., Shah Ch., Mokashe N., Chavan R., Yadav H., Prajapati J. Probiotics As Potential Antioxidants: A Systematic Review. J. Agric. Food Chem., 2015, vol. 63, no. 14, pp. 3615‒3626. DOI:

4. Pankratov A. N., Tsivileva O. M., Beloborodaya A. S., Tsymbal O. A., Drevko Ya. B. Antioxidant Status of Macrobasidiomycetes Mycelium Grown in the Presence of Organoselenium Compounds. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2017, vol. 17, iss. 3, pp. 286–298 (in Russian). DOI:

5. Sibgatullina G. V., Khaertdinova L. R., Gumerova E. A., Akulov A. N., Kostyukova Yu. A., Nikonorova N. A., Rumyantseva N. I. Metody opredeleniya redoks-statusa kul’tiviruemykh kletok rastenii [Methods of Determination of the Redox Status of Cultivated Plant Cells], Kazan, Kazan. (Privolzhskii) federal. un-t, Biol.-pochv. fak., kaf. genetiki, 2011. 61 p. (in Russian).

6. Buchachenko A. L., Vasserman A. M. Stabil’nye radikaly. Elektronnoe stroenie, reaktsionnaya sposobnost’ i primenenie [Stable Radicals. Electronic Structure, Reactivity and Application]. Moscow, Khimiya Publ., 1973. 408 p. (in Russian).

7. Rozantsev E. G., Sholle V. D. Organicheskaya khimiya svobodnykh radikalov [Organic Chemistry of Free Radicals]. Moscow, Khimiya Publ., 1979. 344 p. (in Russian).

8. Nonhebel D. C., Walton J. C. Free-Radical Chemistry: Structure and Mechanism / with a foreword by J. M. Tedder. Cambridge, Cambridge Univ. Press, 1974. 572 p.

9. Nonhebel D. C., Tedder J. M., Walton J. C. Radicals. Cambridge, London, New York, Melbourne, Cambridge Univ. Press, 1979. 200 p. (Cambridge chemistry texts).

10. Vladimirov Yu. A., Archakov A. I. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Peroxide Oxidation of Lipids in Biological Membranes]. Moscow, Nauka Publ., 1972. 252 p. (in Russian).

11. Svobodnoradikal’noe okislenie lipidov v norme i patologii: Materialy simpoziuma. Moskva, 2‒4 iyunya, 1976 [Free Radical Oxidation of Lipids in the Norm and Pathology: Proceedings of the Symposium. Moscow, June 2‒4 1976]. Moscow, Nauka Publ., gl. red. vost. lit., 1976. 200 p. (in Russian).

12. Baraboi V. A., Orel V. E., Karnaukh I. M. Perekisnoe okislenie i radiatsiya [Peroxide Oxidation and Radiation]. Ed. D. M. Grodzinskii. Kiev, Naukova Dumka Publ., 1991. 256 p.

13. Volkova N. P., Vospel’nikova N. D., Silaeva S. A., Golenchenko V. A., Rubtsova G. V., Pavlova N. A., Avdeeva L. V., Gubareva A. E., Aleinikova T. L., Vorob’eva S. A., Andrianova L. E., Siluyanova S. N., Lesnichuk S. A., Osipov E. V., Likhacheva N. V., Korlyakova O. V., Zezerov E. G., Titova T. A. Biokhimiya. Kratkii kurs s uprazhneniyami i zadachami [Biochemistry. A Brief Course with Exercises and Tasks]. Eds. E. S. Severin, A. Ya. Nikolaev. Moscow, GEOTAR-Media Publ., 2005. 448 p. (XXI Century) (in Russian).

14. Aleinikova T. L., Avdeeva L. V., Andrianova L. E., Belushkina N. N., Volkova N. P., Vorob’eva S. A., Golenchenko V. A., Gubareva A. E., Korlyakova O. V., Likhacheva N. V., Pavlova N. A., Rubtsova G. V., Silaeva S. A., Siluyanova S. N., Titova T. A. Biokhimiya [Biochemistry]. Ed. E. S. Severin. Moscow, GEOTAR-Media Publ., 2006. 784 p. (in Russian).

15. Vladimirov Yu. A., Potapenko A. Ya. Fiziko-Khimicheskie Osnovy Fotobiologicheskikh Protsessov [Physicochemical Bases of Photobiological Processes]. Moscow, Drofa Publ., 2006. 287 p. (in Russian).

16. Repetto M., Semprine J., Boveris A., Kancheva V. D., Kasaikina O. T., Ali Hassan H., Abd El-Aal M., González P. M., Piloni N. E., Puntarulo S., Ilie M., Margină D., Sochor J., Ruttkay-Nedecky B., Babula P., Adam V., Hubalek J., Kizek R., Kaurinovic B., Popovic M., Fagali N., Catalá A., Mimica-Dukić N., Simin N., Svirčev E., Orčić D., Beara I., Lesjak M., Božin B., Jaarin K., Kamisah Y., Toyosaki T., Nieto G., Ros G., Kiang J. G., Fukumoto R., Gorbunov N. V., Rossi M. A., Özkaya Y. G., Carrillo M. C., Luján M. de Alvarez, Parody J. P., Quiroga A. D., Ceballos M. P., Sousa T., Afonso J., Albino-Teixeira A., Carvalho F., Fantinelli J. C., Pérez-Núñez I. A., González Arbeláez L. F., Mosca S. M., Pillon N. J., Soulage Ch. O., Naudí A., Jové M., Ayala V., Ramírez O., Cabré R., Prat J., Portero-Otin M., Ferrer I., Pamplona R., Kisic B., Miric D., Zoric L., Ilic A., Shimizu I., Shimamoto N., Saiki K., Furujo M., Osawa K., Kanunnikova N. P., Bashun N. Z., Moiseenok A. G., Vagula M. C., Konieszko E. M. Lipid Peroxidation. Ed. by A. Catalá. InTech, 2012. 546 p. Available at:

17. Tikhonov I. V., Pliss E. M., Borodin L. I., Sen’ V. D. Superoxide Radicals in the Kinetics of Nitroxide-Inhibited Oxidation of Methyl Linoleate in Micelles. Russ. J. Phys. Chem. B: Focus on Physics, 2017, vol. 11, no. 3, pp. 400‒402 (in Russian). DOI:

18. Lankin V. Z., Shumaev K. B., Tikhaze A. K., Kurganov B. I. Infl uence of Dicarbonyls on Kinetic Characteristics of Glutathionperoxidase. Doklady Biochemistry and Biophysics, 2017, vol. 475, no. 1, pp. 287‒290 (in Russian). DOI:

19. Pat. 2051681 RF. MPK 6 A 61 K 33/04. Sredstvo dlya lecheniya i profi laktiki boleznei, vyzyvaemykh nedostatocnost’yu selena v organizme sel’skokhozyaistvennykh zhivotnykh i ptits [Remedy for Treatment and Prophylactics of Diseases Caused by Selenium Defi ciency in Organisms of Agricultural Animals and Poultry]. B. I. Drevko, V. A. Antipov, O. I. Zhukov, L. A. Fomenko, L. I. Markova, R. I. Drevko, T. N. Rodionova, V. I. Efremov, V. G. Kharchenko. Zayavleno 24.09.1993, № 93045743/15; Opublikovano 10.01.1996. 12 s. Izobreteniya (zayavki i patenty). Filed 24.09.1993, no. 93045743/15; Published 10.01.1996, 12 pp. [Inventions (Claims and Patents)]. Bull. no. 1 (II part), p. 161] (in Russian).

20. Pat. 2171110 RF. MPK 7 A 61 K 33/04. Sredstvo dlya lecheniya i profi laktiki infektsionnykh zabolevanii i otravlenii zhivotnykh i ptits, povyshayushchee ikh produktivnost’ i sokhrannost’ [Remedy for Treatment and Prophylactics of Infectious Diseases and Poisonings of Animals and Poultry Enhancing Their Productivity and Vitality]. B. I. Drevko, R. I. Drevko, V. A. Antipov, B. A. Chernukha, A. N. Yakovlev. Zayavleno 26.05.1999, № 99111064/13; Opubl. 27.07.2001. 16 s. Izobreteniya. Poleznye modeli [Inventions. Useful Models], 2001. Byulleten’ № 21 (II part). S. 219. Patent no. 2171110 of the Russian Federation, MPK 7 A 61 K 33/04, Filed 26.05.1999, no. 99111064/13; Published 27.07.2001, 16 pp.; 2001, Bull. no. 21 (II part), p. 219] (in Russian).

21. Drevko Ya. B., Fedotova O. V. Synthesis of the First Representatives of Benzannelated Dihydroselenochromenes. Chem. Heterocyclic Compds., 2006, vol. 42, no. 10, pp. 1372‒1373. DOI:

22. Khairullina V. R., Gerchikov A. Ya., Garifullina G. G., Drevko Ya. B., Fedotova O. V. Antioxidant Properties of 2,4-Diphenyl-7,8-benzo-5,6-dihydro(4H)selenochromene and 2-para-Chlorophenyl-4-phenyl-7,8-benzo-5,6-dihydro(4H)selenochromene. Kinetics and Catalysis, 2010, vol. 51, no. 1, pp. 38‒41. DOI:

23. Khairullina V. R., Gerchikov A. Ya., Il’ina E. A., Drevko Ya. B., Isaeva A. Yu., Drevko B. I. Antioxidant Properties of Some 7,8-Benzo-5,6-dihydro(4H)selenochromene Derivatives. Kinetics and Catalysis, 2013, vol. 51, no. 1, pp. 14‒17. DOI:

24. Drevko Ya. B., Osina T. S., Fedotova O. V., Drevko B. I. Reduction Reaction of 2,4-Diaryl-7,8-benzo-5,6-dihydroselenochromenes. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2015, vol. 15, iss. 2, pp. 5‒7 (in Russian).

25. Shlüter M., Sham L. Teoriya funktsionala plotnosti [Density Functional Theory]. In: Fizika za rubezhom.Teoriya polya. Zhidkie kristally. Fizika tverdogo tela. Astro- i geofi zika. Novosti fi ziki: sb. nauch.-pop. st. Perevod s angl. L. M. Blinova et al. [Physics Abroad: Collection of Popular Science Articles. Field Theory. Liquid Crystals. Solid State Physics. Astro- and Geophysics. Novelties of Physics]. Moscow, Mir Publ., 1983, pp. 179‒203 (in Russian).

26. Koch W., Holthausen M. C. A Chemist’s Guide to Density Functional Theory. Toronto, Willey-VCH, 2001. 293 p. DOI:

27. Kohn W. Electronic Structure of Substance – Wave Functions and Density Functionals. Physics – Uspekhi, 2002, vol. 172, no. 3, pp. 336‒348 (in Russian). DOI: (Engl. ed.: Kohn W. Nobel Lecture: Electronic Structure of Matter – Wave Functions and Density Functionals. Rev. Mod. Phys., 1999, vol. 71, no. 5, pp. 1253‒1266. DOI:

28. Sousa S. F., Fernandes P. A., Ramos M. J. General Performance of Density Functionals. J. Phys. Chem. A, 2007, vol. 111, no. 42, pp. 10439‒10452. DOI:

29. Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A, 1988, vol. 38, no. 6, pp. 3098‒3100. DOI:

30. Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648‒5652. DOI:

31. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B, 1988, vol. 37, no. 2, pp. 785‒789. DOI:

32. Krishnan R., Binkley J. S., Seeger R., Pople J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys., 1980, vol. 72, no. 1, pp. 650‒654. DOI:

33. McLean A. D., Chandler G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11-18. J. Chem. Phys., 1980, vol. 72, no. 10, pp. 5639‒5648. DOI:

34. Reed A. E., Curtiss L. A., Weinhold F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev., 1988, vol. 88, no. 6, pp. 899‒926. DOI:

35. Nemukhin A. V., Weinhold F. Kontseptsiya L’yisa v sovremennoi kvantovoi khimii [Lewis Concept in Modern Quantum Chemistry]. Rossiiskii Khimicheskii Zhurnal (Zhurnal Rossiiskogo Khimicheskogo Obshchestva imeni D. I. Mendeleeva) [Mendeleev Chemistry Journal {Russian Chemical Journal (Journal of the D. I. Mendeleev Russian Chemical Society) (in Russian: Rossiiskii Khimicheskii Zhurnal (Zhurnal Rossiiskogo Khimicheskogo Obschestva imeni D. I. Mendeleeva)], 1994, vol. 38, no. 6, pp. 5‒11 (in Russian).

36. Weinhold F., Landis C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge, Cambridge Univ. Press, 2005. 760 p. DOI:

37. Glendening E. D., Landis C. R., Weinhold F. Natural Bond Orbital Methods. WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 1‒42. DOI:

38. Mayer I. Bond Orders and Energy Components: Extracting Chemical Information from Molecular Wave Functions. Boca Raton, CRC Press, Taylor & Francis Group, 2016. 239 p. DOI:

39. Glendening E. D., Reed A. E., Carpenter J. E., Weinhold F. A. NBO Version 3.1, 1995.

40. Schlegel H. B., McDouall J. J. W. Do You Have SCF Stability and Convergence Problems? Computational Advances in Organic Chemistry: Molecular Structure and Reactivity. Eds. C. Ögretir, I. G. Csizmadia. The Netherlands, Kluwer Academic, 1991, pp. 167‒185 (NATO-ASI Series C 330).

41. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millan J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malich D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D.J., Keith T., Al- Laham M. A., Peng C. Y., Nanayakkara A., Gonzales C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M. W., Andreas J. L., Head-Gordon M., Reploge E. S., Pople J. A. Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh, PA, 2003.

42. Pentin Yu. A., Vilkov L. V. Fizicheskie metody issledovaniya v khimii [Physical Research Methods in Chemistry]. Moscow, Mir Publ., 2006. 684 p. (in Russian).

43. Pretsch E., Bühlmann Ph., Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin, Heidelberg, Springer-Verlag, 2009. 433 p. DOI:

Short text (in English): 
Full text (in Russian):