Cite this article as:

Khorovodov A. P., Shirokov A. A., Novolokin N. A., Terskov A. V., Lauberts E. A., Mamedova A. T., Shushunova N. A., Agranovich I. M., Ulanova M. V., Bodrova A. A., Semyachkina-Glushkovskaya O. V. Development of Fluorescent Glioma in Rats under Pharmacological Modulation of Beta2-Adrenergic Receptor. Izvestiya of Saratov University. New series. Series: Chemistry. Biology. Ecology, 2018, vol. 18, iss. 4, pp. 446-450. DOI: https://doi.org/10.18500/1816-9775-2018-18-4-446-450


Heading: 
UDC: 
616-006.484
Language: 
Russian

Development of Fluorescent Glioma in Rats under Pharmacological Modulation of Beta2-Adrenergic Receptor

Abstract

This study shows the role of adrenergic mechanisms in the development of fluorescent glioma in rats and the impairment of the blood-brain barrier (BBB) permeability. The results demonstrate that the progression of glioma was accompanied by a gradual increase in the BBB permeability and an increased expression of vascular beta2-adrenoreceptors (B2-AR). The pharmacological blockade of B2-AR reduced the degree of BBB disruption, the migration of cancer cells and increased the survival of animals. Our data support the idea that blockade of B2-AP may be a new therapeutic strategy for the treatment of glioma and the prevention of metastases.

References

1. Wöhrer A., Waldhör T., Heinzl H., Hackl M., Feichtinger J., Gruber-Mösenbacher. The Austrian Brain Tumour Registry : a cooperative way to establish a populationbased brain tumour registry // J. of Neuro-Oncology. 2009. Vol. 95, № 3. P. 401–411.

2. Jovčevska I., Kočevar N., Komel R. Glioma and glioblastoma-how much do we (not) know? // Molec. and Clin. Oncology. 2013. Vol. 1, № 6. P. 935–941.

3. Li R., Chen X., You Y., Wang X., Liu Y., Hu Q., Yan W. Comprehensive portrait of recurrent glioblastoma multiforme in molecular and clinical characteristics // Oncotarget. 2015. Vol. 6, № 31. P. 30968.

4. Watkins S., Robel S., Kimbrough I. F., Robert S. M., Ellis-Davies G., Sontheimer H. Disruption of astrocytevascular coupling and the blood-brain barrier by invading glioma cells // Nature Commun. 2014. Vol. 5. P. 4196.

5. Dvorak H. F. How tumors make bad blood vessels and stroma // The Amer. J. of Pathology. 2003. Vol. 162, № 6. P. 1747.

6. Cole S. W., Nagaraja A. S., Lutgendorf S. K., Green P. A., Sood A. K. Sympathetic nervous system regulation of the tumour microenvironment // Nat. Rev. Cancer. 2015. Vol. 15, № 9. P. 563.

7. Qiao G., Chen M., Bucsek M. J., Repasky E. A., Hylander B. L. Adrenergic signaling : a targetable checkpoint limiting development of the anti-tumor immune response // Frontiers in Immunology. 2018. Vol. 9. P. 164.

8. Eldeeb B. B., Hammond E. M., Worthington D. J., Mann J. R. Urinary catecholamines and their metabolites in management of neuroblastoma // Pediatric Hematology and Oncology. 1988. Vol. 5, № 3. P. 229–237.

9. De Giorgi V., Grazzini M., Gandini S., Benemei S., Lotti T., Marchionni N., Geppetti P. Treatment with β-blockers and reduced disease progression in patients with thick melanoma // Arch. of Internal Med. 2011. Vol. 171, № 8. P. 779–781.

10. Nguyễn L. T. H. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment : possible genetic and cellsignaling mechanisms // Cancer Manag. and Res. 2012. Vol. 4. P. 431.

11. Song Q., Ji Q., Li Q. The role and mechanism of β-arrestins in cancer invasion and metastasis // Intern. J. of Molecular Med. 2018. Vol. 41, № 2. P. 631–639.

12. Hoffmann A., Bredno J., Wendland M., Derugin N., Ohara P., Wintermark M. High and Low molecular weight fl uorescein Isothiocyanate (FITC)–dextrans to assess blood-brain barrier disruption : Technical considerations // Transl. Stroke Res. 2011. Vol. 2, № 1. P. 106–111.

Short text (in English): 
Full text (in Russian):