Cite this article as:

Cherkasov D. G., Il’in K. K. Data Approximation for Plotting the Binodal Curve on the Phase Diagrams of Some Ternary Salt – Water – Isopropyl (n-Propyl) Alcohol Systems. Izvestiya of Saratov University. New series. Series: Chemistry. Biology. Ecology, 2019, vol. 19, iss. 3, pp. 274-283. DOI: https://doi.org/10.18500/1816-9775-2019-19-3-274-283


Heading: 
UDC: 
544.344.016+536.44:544.344.013–16–14+544.344.3
Language: 
Russian

Data Approximation for Plotting the Binodal Curve on the Phase Diagrams of Some Ternary Salt – Water – Isopropyl (n-Propyl) Alcohol Systems

Abstract

A brief review of computational methods for the liquid-liquid equilibrium has been carried out, and their capabilities and limitations have been shown. Complications of such computational models for the liquid–liquid–solid equilibrium lead to a decreased accuracy of calculations. In this case, it is advisable for researchers to make use of the approximation of experimental data on the liquid – liquid and liquid – liquid – solid equilibria. A literature review on the ternary salt – water – aliphatic alcohol systems is carried out, where solubility data and the compositions of equilibrium liquid phases were approximated. Based on the analysis of our own experimental data from a polythermal study of phase equilibria and critical phenomena in seven ternary systems sodium (potassium, cesium) nitrate – water – isopropyl alcohol, potassium chloride (bromide, iodide) – water – isopropyl alcohol, potassium nitrate – water – N-propyl alcohol, exponentialtype empirical equations are proposed, which made it possible to successfully approximate our data for plotting the binodal curve in a wide temperature range. The approximations found were established to be satisfied for the individual branches (the water and organic ones) of the binodal curve as well as for it as a whole. The dependences obtained can be useful for predicting changes in the solubility of two liquid phases with temperature and for facilitating the modeling of the binodal surface within the temperature – concentration prism of the ternary salt – binary solvent system.

References
  1. Poling B. E., Prausnitz J. M., O’Connell J. P. Properties of Gases and Liquids. 5th ed. New York, McGraw-Hill, 2001. 747 p.
  2. Prausnitz J. M. Computer Calculations for Multicompo- nent Vapor-Liquid and Liquid-Liquid Equilibria. New Jersey, Prentice-Hall, Englewood Cliffs, 1980. 353 p.
  3. Smirnova N. A. Molekulyarnye teorii rastvorov [Mo- lecular theory of solutions]. Leningrad, Khimiya Publ., 1987. 336 p. (in Russian).
  4. Walas S. M. Phase Equilibria In Chemical Engineering.Butterworth-Heinemann, 1984. 671 p.
  5. CALPHAD (CALculation of PHAse Diagrams): a com- prehensive guide by N. Saunders and А. P. Miodownik. Pergamon Materials Series, Editor R. W. Cahn. 1998. Vol. 1. 473 p.
  6. Afinogenov Yu. P., Goncharov E. G., Semyonov G. V., Zlomanov V. P. Fiziko-khimicheskiy analiz mnogokom- ponentnykh sistem [Physicochemical analysis of multi- component systems]. Moscow, MPTI, 2006. 332 p. (in Russian).
  7. Lukas H. L., Fries S. G., Sundman B. Computational Thermodynamics, the Calphad Method. Cambridge University Press, 2007. 324 p.
  8. Morachevsky A. G. Termodinamika rasplavlennykh metallicheskikh i solevykh sistem [Thermodynamics of molten metal and salt systems. Moscow, Metallurgiya Publ., 1987. 240 p. (in Russian).
  9. Pitzer K. S. Thermodynamics of Electrolytes. I. Theoreti- cal basis and general equations. J. Phys. Chem., 1973, vol. 77, no. 2, pp. 268‒277.
  10. Pitzer K. S., Mayorga G. Thermodynamics of Elec- trolytes, II. Activity and osmotic coefficients with one or both ions univalent. J. Phys. Chem., 1973, vol. 77, no. 19, pp. 2300‒2308.
  11. Pitzer K. S., Mayorga G. Thermodynamics of Elec- trolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem., 1974, vol. 3, no. 7,  pp. 539‒546.
  12. Pitzer K. S., Kim J. J. Thermodynamics of electro- lytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc., 1974, vol. 96, no. 18, pp. 5701‒5707.
  13. Peres A. M., Macedo E. A. Thermodynamic properties of sugars in aqueous solutions: correlation and prediction using a modified UNIQUAC model. Fluid Phase Equil., 1996, vol. 123, no. 1‒2, pp. 71‒95.
  14. Larsen B. L., Rasmussen P., Fredenslund A. A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res., 1987, vol. 26, no. 11, pp. 2274‒2286.
  15. Olaya M. M., Marcilla A., Serrano M. D., Botella A., Reyes-Labarta J. A. Simultaneous Correlation of Liquid- Liquid, Liquid-Solid, and Liquid-Liquid-Solid Equilib- rium Data for Water + Organic Solvent + Salt Ternary Systems. Anhydrous Solid Phase. Ind. Eng. Chem. Res., 2007, vol. 46, pp. 7030‒7037.
  16. Marcilla A., Reyes-Labarta J. A., Olaya Maria del Mar, Serrano Maria D. Simultaneous Correlation of Liquid- Liquid, Liquid-Solid, and Liquid-Liquid-Solid Equilib- rium Data for Water + Organic Solvent + Salt Ternary Systems: Hydrated Solid Phase Formation. Ind. Eng. Chem. Res., 2008, vol. 47, pp. 2100‒2108.
  17. Ginnings P. M., Chen Z. T. Ternary systems: water, isopropanol and salts at 25o. J. Am. Chem. Soc., 1931, vol. 53, no. 10, pp. 3765‒3769.
  18. Ferner S. W., Mellon M. G. Аnalytical uses of 2-pro- panol. Ind. Eng. Chem., Anal. Ed., 1934, vol. 6, no. 5, pp. 345‒348.
  19. Gomis V., Ruiz F., Vera G. De, Lopez E., Saquete M. D. Liquid-liquid-solid equilibria for the ternary systems water-sodium chloride or potassium chloride – 1-propa- nol or 2-propanol. Fluid Phase Equilibria, 1994, vol. 98, no. 1‒2, pp. 141‒147.
  20. Gomis V., Ruiz F., Boluda N., Saqueto M. D. The influence of temperature on the liquid – liquid – solid equilibrium of the ternary system water – potassium chloride – 2 – propanol. Fluid Phase Equilibria, 1997, vol. 130, no. 1‒2, pp. 223‒229.
  21. Hu M. C., Zhai Q. G., Liu Z. H., Xia S. P. Liquid- liquid and solid-liquid equilibrium of the ternary system ethanol + cesium sulfate + water at (10, 30, and 50)° C. J. Chem. Eng. Data, 2003, vol. 48, pp. 1561‒1564.
  22. Gomis V., Ruiz F., Asensi J. C., Cayvela P. Liquid-liquid- solid equilibria for the ternary systems water-lithium chloride-1-propanol or 2-propanol at 25° C. Fluid Phase Equilib., 1996, vol. 119, pp. 191‒195.
  23. Gomis V., Ruiz F., de Vera G., Lopez E., Saquete M. D. Liquid-liquid-solid equilibria for the ternary systems water-sodium chloride or potassium chloride-1-propanol or 2-propanol. Fluid Phase Equilib., 1994, vol. 98, pp. 141‒147.
  24. Taboada M. E. Liquid-liquid and liquid-solid equilibrium of the 1-propanol + lithium sulfate + water system at  25, 35 and 45°C. Fluid Phase Equilib., 2003, vol. 204, pp. 155‒165.
  25. Zafarani-Moattar M. T., Salabat A. Phase Diagrams  of Aliphatic Alcohols + Magnesium  Sulfate  +  Water. J. Chem. Eng. Data, 1997, vol. 42, pp. 1241‒1243.
  26. Brenner D. K., Anderson E. W., Lynn S., Prausnitz J. M. Liquid-Liquid Equilibria for Saturated Aqueous Solu- tions of Sodium Sulfate + 1-Propanol, 2-Propanol,or 2-Methylpropan-2. J. Chem. Eng. Data, 1992, vol. 37, pp. 419‒422.
  27. Zafarani-Moattar M. T., Gasemi J. Phase Diagrams of Some Aliphatic Alcohols + Ammonium Dihydrogen Phosphate or Diammonium Hydrogen Phosphate + Water. J. Chem. Eng. Data, 2002, vol. 47, pp. 525‒528.
  28. Santis R. de, Marrelli L.,  Muscetta P.  N.  Influence of Temperature on the Liquid-Liquid Equilibrium of the Water-n-Butyl Alcohol-Sodium Chloride System. J. Chem. Eng. Data, 1976, vol. 21, pp. 324‒327.
  29. Ginnincs P. M., Herring E., Webb B. Ternary Systems: Water, Tertiary Butanol and Salts at 25°. J. Am. Chem. Soc., 1933, vol. 55, pp. 875‒878.
  30. Hu M., Zhai Q., Jiang Y., Liu Z. Solid-Liquid Phase Equi- libria of Some Aliphatic Alcohols + Cesium Sulfate + Water. J. Chem. Eng. Data, 2004, vol. 49, pp. 1070‒1073.
  31. Hu M., Jin L., Jiang Y., Li S., Zhai Q. Solubility of Cesium Nitrate in Aqueous Alcohol Solutions at (25, 35, and 45) °C. J.  Chem. Eng. Data, 2005, vol. 50,  pp. 1361‒1364.
  32. Hu M., Jin L., Li Shu’ni, Jiang Y. Equilibrium Phase Be- havior of Water + Propan-1-ol or Propan-2-ol + Cesium Chloride at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data, 2005, vol. 50, pp. 2049‒2052.
  33. Arzideh S. M., Movagharnejad K., Pirdashti M. Influ- ence of the Temperature, Type of Salt, and Alcohol on Phase Diagrams of 2-Propanol + Inorganic Salt Aque- ous Two-Phase Systems: Experimental Determination and Correlation. J. Chem. Eng. Data, 2018, vol. 63, pp. 2813‒2824.
  34. Katayama H., Sugahara K. Liquid−Liquid Phase Equi- libria of the System Ethanol (1) + Water (2) + Tripotas- sium Citrate (3). J. Chem. Eng. Data, 2008, vol. 53,   pp. 1940‒1943.
  35. Othmer D. F., Tobias P. E. Toluene and acetaldehyde systems: tie line correlation; partial pressures of ternary liquid systems and the prediction of tie lines. Ind. Eng. Chem., 1942, vol. 34, pp. 690‒700.Bancroft W. D. Ternary mixtures, III. J. Phys. Chem., 1897, vol. 1, no. 7, pp. 403‒410.
  36. Cherkasov D. G., Il’in K. K., Kurskii V. F. Topological transformation of a phase diagram for the sodium nitrate- water-isopropanol ternary system. Russ. J. Inorg. Chem., 2011, vol. 56, no. 5, pp. 787‒791 (in Russian).
  37. Sinegubova S. I., Il’in K. K., Cherkasov D. G., Kurskii V. F., Tkachenko N. V. Salting-out of isopropyl alcohol from aqueous solutions with potassium nitrate. Russ. J. Applied Chem., 2004, vol. 77, no. 12. pp. 1924‒1928 (in Russian).
  38. Cherkasov D. G., Kurskii V. F., Sinegubova S. I., Il’in K. K.Topological transformation of the cesium nitrate-water- isopropanol ternary phase diagram. Russ. J. Inorg. Chem., 2009, vol. 54, no. 6, pp. 969‒973 (in Russian).
  39. Il’in K. K., Cherkasov D. G., Kurskii V. F. Comparing the salting-out effects of alkali-metal nitrates on the water-isopropanol system. Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, pp. 1670‒1673 (in Russian).
  40. Sinegubova S. I., Cherkasov D. G., Il’in K. K. Salting-out of n-propyl alcohol with potassium nitrate from aqueous solutions. Russ. J. Applied Chem., 2005, vol. 78, no. 3, pp. 394‒398 (in Russian).
  41. Il’in K. K., Cherkasov D. G., Yakushev S. A. Polythermal study of salting-out of isopropyl alcohol from aqueous solutions with potassium chloride and bromide. Russ.   J. Gen. Chem., 1998, vol. 68, no. 2, pp. 227‒233 (in  Russian).
  42. Il’In K. K., Cherkasov D. G. Solid – Liquid and Solid –
  43. Liquid – Liquid Equilibria in the KI+H2O+i-C3H7OH Ternary System within 10–120° C. Chem. Eng. Commun., 2016, vol. 203, iss. 5, pp. 642‒648.DOI: https://doi.org/10.1080/00986445.2015.1076802
  44. Snell J. F. Potassium chlorid in aqueous acetone. J. Phys. Chem., 1898, vol. 2, no. 8, pp. 457‒491.
  45. Thompson A. R., Molstad M. C. Solubility and Den- sity Isotherms – Potassium and Ammonium Nitrates in Isopropanol Solutions. Ind. Eng. Chem., 1945, vol. 37, no. 12, pp. 1244‒1248.
  46. Varlamova T. M., Gerasimova G. V., Antonova E. V., Golubnicheva E. M. Solubility of potassium iodide in water–alcohol mixtures. Khimicheskie nauki-2006: sb. nauch. tr. [Chemical Sciences-2006: coll. of sci. papers]. Iss. 3. Saratov, Nauchnaya kniga Publ., 2006, pp. 32‒35 (in Russian).

 

 

 

Full text (in Russian):