Cite this article as:

Ibrahim I. M., Rybal’chenko D. A., Fedonenko Y. P., Konnova S. A. Characterization Surface Glycopolymers from Halophilic Gram-Negative Bacteria Chromohalobacter salexigens 1QL3 and Halomonas ventosae S5(2). Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 3, pp. 312-317. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Characterization Surface Glycopolymers from Halophilic Gram-Negative Bacteria Chromohalobacter salexigens 1QL3 and Halomonas ventosae S5(2)


Extracellular and membrane polysaccharides of halophilic bacteria arouse the interest of researchers as promising biopolymers involved in adaptation and maintenance of normal physiology of microorganisms in saline environments that accompany many biotechnological processes. This work aimed at structural characteristic of surface glycopolymers of halophilic Gram-negative bacteria isolated from the salt samples of the lakes Qarun (Egypt) and Elton (Russia) – strains Chromohalobacter salexigens EG1QL3 and Halomonas ventosae RU5S2EL, respectively. The strains were cultured in a liquid S-G medium. Exopolysaccharides (EPS) were precipitated from the culture liquid with ethanol and fractionated by gel-permeation chromatography. Lipopolysaccharides (LPS) were extracted from dry biomass by Westphal method. Biopolymer composition of the LPS, fatty acid composition of lipids A, and the monosaccharide composition of the EPS and LPS were determined. It was found that C. salexigens EG1QL3 and H. ventosae RU5S2EL produce EPS with a yield of 11.5 and 3 g/L, respectively. The EPS of H. ventosae RU5S2EL is a mixture of the heteropolysaccharides from rhamnose, mannose and glucose, while C. salexigens EG1QL3 EPS is a fructan heterogeneous in molecular weight. SDS PAGE analysis showed that in the LPS from C. salexigens EG1QL3 R-forms prevailed, while in H. ventosae RU5S2EL LPS S-forms were predominant. GLC of acetylated 2-(S)-octylglycosides demonstrated that the LPS of both strains contained D-glucose and L-rhamnose in a different ratio. 3-Hy- droxydodecanoic, hexadecanoic and octadecenoic acids were identified among the main components of the hydrophobic part of the LPS of both strains. The LPS from H. ventosae RU5S2EL is promising for further research on the structure of OPS.


1. Oren A. Halophilic microbial communities and their environments // Curr. Opin. Biotechnol. 2015. Vol. 33. P. 119–124.

2. Zhuang X., Han Z., Bai Z., Zhuang G., Shim H. Progress in decontamination by halophilic microorganisms in saline wastewater and soil // Environ. Pollut. 2010. Vol. 158(5). P. 1119–1126.

3. Castillo-Carvajal L. C., Sanz-Martín J. L., BarragánHuerta B. E. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review // Environ. Sci. Pollut. Res. Intern. 2014. Vol. 21 (16). P. 9578–9588.

4. Ventosa A., Nieto J. J., Oren A. Biology of moderately halophilic aerobic bacteria // Microbiol. Mol. Biol. Rev. 1998.Vol. 62. P. 504–544.

5. Ventosa A., Nieto J. J. Biotechnological applications and potentialities of halophilic microorganisms // World J. Microbiol. Biotechnol. 1995. Vol. 11. P. 85–94.

6. Margesin R., Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology // Extremophiles. 2001. Vol. 5. P. 73–83.

7. Кульшин В. А., Яковлев А. П., Аваева С. Н., Дмитриев Б. А. Улучшенный метод выделения липополисахаридов из грамотрицательных бактерий // Мол. генетика, микробиол. и вирусол. 1987. № 5. С. 44–46.

8. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stain polyacrylamide gels // J. Bacteriol. 1983. Vol. 154. P. 269–277.

9. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels // Anal. Biochem. 1982. Vol. 119. P. 115–119.

10. Konnova S. A., Makarov O. E., Skvortsov I. M., Ignatov V. V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interaction // FEMS Microbiol. Lett. 1994. Vol. 118. P. 93–99.

11. Mayer H., Tharanathan R. N., Weckesser J. Analysis of lipopolysaccharides of Gram-negative bacteria // Methods Microbiol. 1985. Vol. 18. P. 157–207.

12. Sawardecker J. S., Sloneker J. H., Jeans A. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography // Anal. Chem. 1965. Vol. 37. P. 1602–1603.

13. Leontein K., Lindberg B., Lönngren J. Assignment of absolute confi guration of sugars by g.l.c. of their acetylated glycosides formed from chiral alcohols // Carbohydr. Res. 1978. Vol. 62. P. 359–362.

14. Molinaro A., Holst O., Di Lorenzo F., Callaghan M., Nurisso A., D’Errico G., Zamyatina A., Peri F., Berisio R., Jerala R., Jimenez-Barbero J., Silipo A., Martin-Santamaria S. Chemistry of lipid A: at the heart of innate immunity // Chemistry. 2015. Vol. 21 (2). P. 500–519.

Short text (in English): 
Full text (in Russian):