Cite this article as:

Venig S. B., Chernova R. K., Serzhantov V. G., Rusanova T. Y., Mikerov A. N., Shapoval О. G., Glushakov i. A., Selifonova E. I., Naumova G. N. Antibacterial properties of a biologically active composite based on glauconite. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2021, vol. 21, iss. 1, pp. 62-71. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Antibacterial properties of a biologically active composite based on glauconite

Тип статьи для РИНЦ: 
RAR научная статья

Glauconite, a natural aluminosilicate, exhibits good sorption properties, is an affordable, cheap material, and has the prospect of being used in construction, ecology, medicine, cosmetology, animal husbandry, poultry farming, agriculture, etc. An urgent task is to study the sorption activity of glauconite in the Beloozersky deposit in the Saratov region in relation to biologically active substances for the creation of antimicrobial composites. The elemental composition and surface morphology of glauconite grains are determined. The sorption capacity of glauconite with respect to the pharmaceutical preparation rivanol based on acridine dye and the degree of its extraction from aqueous solutions were determined by spectrophotometry. A composite was obtained by sorption immobilization and analyzed for antimicrobial activity in relation to the standard strains of Staphylococcus aureus ATCC 6538 P and Escherichia coli ATCC 25922. An improvement in the antimicrobial properties of the immobilized preparation was revealed in comparison with an aqueous solution. The best effect of the composite in relation to Staphylococcus aureus ATCC 6538 P was determined compared to Escherichia coli ATCC 25922. The results of these studies can find practical application in veterinary medicine, poultry farming, agriculture, medicine, etc.

  1. Tarasevich Yu. I. Stroenie i himiya poverhnosti sloistyh silikatov [Structure and surface chemistry of layered silicates]. Kiev, Nauka Publ., 1988. 248 p. (in Russian).
  2. Nomenklatura slyud: Zaklyuchitel’nyj doklad Podkomiteta po slyudam Komissii po novym mineralam i nazvaniyam mineralov Mezhdunarodnoj mineralogicheskoj associacii (KNMNM MMA) [Mica Nomenclature: Final report of the mica sub-Committee of the Commission on new minerals and mineral names of the International mineralogical Association (knmnm MMA)]. Zapiski Vsesoyusnogo mineralogicheskogo obshchestva [Notes of the all-Union mineral society], 1998, vol. 127, no. 5, pp. 55–65 (in Russian).
  3. Levchenko M. L. State of the raw material base and the possibility of using glauconites in Russia. Mineral resources of Russia. Economics and management, 2008, vol. 2, pp. 27–31 (in Russian).
  4. Venig S. B., Chernovа R. K., Glukhovskoy E. G., Serzhantov V. G., Splyukhin V. P., Perespelova M. A., Selifonova E. I., Naumova G. N., Zakharevich A. M., Selifonov A. A., Kozhevnikov I. O., Scherbakova N. N. Determination of the Sorption Characteristics of Glauconite during Extraction of a Pharmaceutical from an Aqueous Medium. Moscow University Chemistry Bulletin, 2017, vol. 72 (5), pp. 245–250.
  5. Belousov P., Semenkova A., Egorova T., Romanchuk A., Zakusin S., Dorzhieva O., Tyupina E., Izosimova Y., Tolpeshta I., Chernov M., Krupskaya V. Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite and Diatomite. Minerals, 2019, vol. 9, no. 10, pp. 625–628.
  6. Wang J. P., Chi F., Kim I. H. Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microfl ora, and oxidative stress in weaning gilts challenged with zearalenone. Anim. Feed. Sci. Technol., 2012, vol. 178, no. 66, pp. 158–163.
  7. Yiannikouris A., Kettunenb H., Apajalahtib J. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit. Contam. Part A. Chem. anal Control Expo Risk Assess, 2013, vol. 30, no. 9, pp. 1641–50.
  8. Venig S. B., Chernova R. K., Serzhantov V. G., Selifonov A. A., Shapoval O. G., Nechaeva O. V., Splyukhin V. P., Selifonova E. I., Naumova G. N., Scherbakova N. N. Antibacterial Composites Based on Natural Sorbent. Moscow University Chemistry Bulletin, 2018, vol. 73, no. 3, pp. 125–130.
  9. Salykov R. S., Abramova I. A. Zholdoshalieva N. S. The effect of the mineral glauconite on the immune reactivity of the sheep’s organism. Science and New Technologies, 2012, vol. 7, pp. 104–106 (in Russian).
  10. Gregorio M. C. D., Neeff D. V., Jager A. V., Corassin C. H., Cara A. C. P., Albuquerque R., Azevedo A. C., Oliveira C. A. F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev., 2014, vol. 35, pp. 267–274.
  11. Basyrov A. R., Gadiev R. R. Effektivnost’ ispol’zovaniya glaukonita v racionah myasnyh gusyat. Vestnik Bashkir State Agrarian University, 2012, no. 1, pp. 23–24 (in Russian).
  12. Doll S., Gericke S., Danicke S. The effi cacy of a modifi ed aluminosilicate as a detoxifying agent in Fusarium toxin contaminated maize containing diets for piglets. J. Anim. Physiol. Anim. Nutr. (Berl), 2005, vol. 89, pp. 342–358.
  13. Drel’ I. V., Volkov M. Yu., Ovchinnikov A. A. Evaluation of the effect of natural glauconite aluminosilicate on the digestibility and use of nutrients in the ruminant diet. Veterinary medicine. Ser. Physiology, 2010, vol. 2, pp. 26–28 (in Russian).
  14. Eser H., Yalc S., Yalc S., Sehu A. Effects of sepiolite usage in broiler diets on performance, carcass traits and some blood parameters. Kafkas Univ. Vet. Fak. Derg., 2012, vol. 18, no. 8, pp. 313–319.
  15. Harper A. F., Estienne M. J., Meldrum J. B. Assessment of a hydrated sodium calcium aluminosilicate agent and antioxidant blend for mitigation of afl atoxin-induced physiological alterations in pigs. J. Swine Health Prod., 2010, vol. 18, no. 9, pp. 282–291.
  16. Neeff D. V., Ledoux D. R., Rottinghaus G. E. In vitro and in vivo effi cacy of a hydrated sodium calcium aluminosilicate to bind and reduce afl atoxin residues in tissues of broiler chicks fed afl atoxin B1. Poult Sci., 2013, vol. 92, no. 7, pp. 131–139.
  17. Bel’chinskaya L. I., Hodosova N. A., Novikova L. A., Strel’nikova O. Yu., Ressner F., Petuhova G. A., Zhabin A. V. Regulation of sorption processes on natural nanoporous aluminosilicates. Physical Chemistry of Surfaces and Protection of Materials, 2016, vol. 52, no. 4, pp. 363–370 (in Russian).
  18. Petrikaite V., Tarasevicius E., Pavilonis A. New ethacridine derivatives as the potential antifungal and antibacterial preparations. Medicina (Kaunas), 2007, vol. 43, no. 8, pp. 657–663.
  19. Patyk-Kara N. G., Andrianova E. A., Dubinchuk V. T., Levchenko M. L. Costav i elementy-primesi glaukonitov verhnemelovoj formacii central’nyh rajonov Rossii [Composition and elements-admixtures of glauconites of the upper Cretaceous formation of the Central regions of Russia]. In: Mineralogicheskie issledovaniya i mineral’no-syr’evye resursy Rossii: materialy godichnogo sobraniya RMO [Mineralogical research and mineral resources of Russia: materials of the annual meeting of the RMO]. Moscow, IGEM RAN, RIS VIMSa, 2007, pp. 74–78 (in Russian).
  20. Sukharev Yu. I., Kuvy`kina E. A. Structural and morphological features of glauconite of the Bagaryak Deposit. Izv. Chelyabinsk. Scientifi c Center. Ser. Chemistry and Chemical Technology, 2000, no. 3, pp. 77–81 (in Russian).
  21. Grigor`eva, A.V. Ispol`zovanie metodov prikladnoj mineralogii pri izuchenii tekhnologicheskikh svojstv glaukonitsoderzhashhikh peskov [Using methods of applied Mineralogy in the study of technological properties of glauconite-containing Sands]. Gorny`j informaczionno-analiticheskij byulleten` (nauchno-tekhnicheskij zhurnal) [Mining information and analytical Bulletin (scientifi c and technical journal)], 2009, vol. 15, iss. 12, pp. 301–308 (in Russian).
  22. Aripov E`. A. Prirodny`e mineral`ny`e sorbenty`, ikh aktivirovanie i modifi czirovanie [Natural mineral sorbents, their activation and modifi cation]. Tashkent, FAN Publ., 1970. 240 p. (in Russian).
  23. Vigdorovich V. I., Bogdanova E. P., Cygankova L. E., Nikolenko D. V., Akulov A. I. Vliyanie predvaritel’noj termicheskoj i himicheskoj obrabotki glaukonita GBRTO na ego rentgenostrukturnye harakteristiki i sorbcionnuyu emkost’ kationov medi (II) i svinca (II) [Infl uence of preliminary thermal and chemical treatment of glauconite GBRTO on its x-ray structural characteristics and sorption capacity of copper (II) and lead (II) cations]. Kondensirovannye sredy i mezhfaznye granicy [Condensed media and interphase boundaries], 2012, vol. 14, no. 1, pp. 20–24 (in Russian).
  24. Wugmeister M., Summers W.C. A bacterial mutagenicity study of rivanol, an acridine derivative used as an abortifacient. Yale Journal of Biology and Medicine, 1983, vol. 56, no. 1, pp. 9–13.
  25. Wainwright M. Acridine- neglected antibacterial chromophore. Journal of Antimicrobial Chemotherapy, 2001, vol. 47, no. 1, pp. 1–13.
  26. Vigdorovich V. I., Cygankova D. V., Nikolenko D. V. Adsorption capacity of glauconite in the Bondarsky district of the Tambov region. Sorption and Chromatographic Processes, 2010, vol. 10, iss. 1, pp. 121–126 (in Russian).
Short text (in English): 
Full text (in Russian):